Preprint
Article

Application of Demand Response Strategy in Optimal Configuration of a Standalone Wind-Solar-Battery System

This version is not peer-reviewed.

Submitted:

22 April 2018

Posted:

24 April 2018

You are already at the latest version

Abstract
This study presents application of demand response strategy in a standalone wind-solar-battery hybrid energy system (HES). Inputs for the designed HES are wind speed, solar radiation, temperature and load demand which is variable with time. In this study, hourly values of meteorological data and hourly load demand are considered in one year. An improved gravitational search algorithm (IGSA) is used to optimize the configuration of the standalone wind-solar-battery hybrid power system. The optimal objectives of the system are cost of the system in life cycle, the loss of power supply probability(LPSP)and the energy excess percentage(EXC).The effect of demand response on economic benefit and energy storage allocation of the standalone wind-solar-battery system is studied. The obtained optimal configuration of the proposed HES can provide minimal energy cost with excellent performance and reduced waste and unmet load.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

467

Views

306

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated