Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

The FA Polymerization Disruption by Protic Polar Solvent

Version 1 : Received: 20 April 2018 / Approved: 20 April 2018 / Online: 20 April 2018 (14:19:30 CEST)

A peer-reviewed article of this Preprint also exists.

Falco, G.; Guigo, N.; Vincent, L.; Sbirrazzuoli, N. FA Polymerization Disruption by Protic Polar Solvents. Polymers 2018, 10, 529. Falco, G.; Guigo, N.; Vincent, L.; Sbirrazzuoli, N. FA Polymerization Disruption by Protic Polar Solvents. Polymers 2018, 10, 529.

Abstract

Furfuryl alcohol (FA) is a biobased monomer derived from lignocellulosic biomass. The present work describes its polymerization in presence of protic polar solvents, i.e. water or isopropyl alcohol (IPA), using maleic anhydride (MA) as acidic initiator. The polymerization was followed from the liquid to the rubbery state by combining DSC and DMA data. In the liquid state, IPA disrupts the expected reactions during all the FA polymerization due to a stabilization of the furfuryl carbenium center. This causes the initiation of the polymerization at higher temperature, which is also reflected by higher activation energy. In water system, the MA opening allows to start the reaction at lower temperature. A higher pre-exponential factor value is obtained in that case. The DMA study of final branching reaction occurring in the rubbery state has highlighted continuous increase of elastic modulus until 290 °C. This increasing tendency of modulus was exploited to obtain activation energy dependences (Eα) of FA polymerization in the rubbery state.

Keywords

Renewable resources; Lignocellulosic Biomass; Polymerization; Reaction mechanisms; Furfuryl alcohol

Subject

Chemistry and Materials Science, Polymers and Plastics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.