Preprint
Article

This version is not peer-reviewed.

Software and DVFS tuning for performance and energy-efficiency on Intel KNL processors

A peer-reviewed article of this preprint also exists.

Submitted:

05 April 2018

Posted:

06 April 2018

You are already at the latest version

Abstract
Energy consumption of processors and memories is quickly becoming a limiting factor in the deployment of large computing systems. For this reason it is important to understand the energy performance of these processors and to study strategies allowing to use them in the most efficient way. In this work we focus on computing and energy performance of the Knights Landing Xeon Phi, the latest Intel many-core architecture processor for HPC applications. We consider the 64-core Xeon Phi 7230, and profile its performance and energy efficiency using both its on-chip MCDRAM and the off-chip DDR4 memory as the main storage for application data. As a benchmark application we use a Lattice Boltzmann code heavily optimized for this architecture, and implemented using several different arrangements of the application data in memory (data-layouts, in short). We also assess the dependence of energy consumption on data-layouts, memory configurations (DDR4 or MCDRAM), and number of threads per core. We finally consider possible trade-offs between computing performance and energy efficiency, tuning the clock frequency of the processor using the Dynamic Voltage and Frequency Scaling (DVFS) technique.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated