Preprint
Article

This version is not peer-reviewed.

A Deep Learning Model of Perception in Color-Letter Synesthesia

A peer-reviewed article of this preprint also exists.

Submitted:

17 December 2017

Posted:

19 December 2017

You are already at the latest version

Abstract
Synesthesia is a psychological phenomenon where sensory signals become mixed. Input to one sensory modality produces an experience in a second, unstimulated modality. In “grapheme-color synesthesia”, viewed letters and numbers evoke mental imagery of colors. The study of this condition has implications for increasing our understanding of brain architecture and function, language, memory and semantics, and the nature of consciousness. In this work, we propose a novel application deep learning to model perception in grapheme-color synesthesia. Achromatic letter images, taken from database of handwritten characters, are used to induce synesthesia. Results show the model learns to accurately create a colored version of the inducing stimulus, according to a statistical distribution from experiments on a sample population of grapheme-color synesthetes. The spontaneous, creative mental imagery characteristic of the synesthetic perceptual experience is reproduced by the model. A model of synesthesia that generates testable predictions on brain activity and behavior is needed to complement large scale data collection efforts in neuroscience, especially when articulating simple descriptions of cause (stimulus) and effect (behavior). The research and modeling approach reported here begins to address this need.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated