Preprint
Article

This version is not peer-reviewed.

Experimental Study on Methane Desorption from Lumpy Coal under the Action of Hydraulic and Thermal

A peer-reviewed article of this preprint also exists.

Submitted:

09 May 2018

Posted:

10 May 2018

You are already at the latest version

Abstract
Moisture and thermal are the key factors for influencing methane desorption during CBM exploitation. Using high pressure water injection technology into coalbed, new fractures and pathways are formed to methane transport. It is existed a phenomenon of water inhibiting gas flow. This study is focused on various water pressures impacted on gas adsorbed coal samples, then the desorption capacity could be revealed under different conditions. And the results are shown that methane desorption capacity was decreased with water pressure increased at room temperature and the downtrend would be steady until water pressure was large enough. Heating could promote gas desorption capacity effectively, with the increasing of water injection pressures, the promotion of thermal on desorption became more obvious. These results are expected to provide a clearer understanding of theoretical efficiency of heat water or steam injection into coalbed, they can provide some theoretical and experimental guidance on CBM production and methane control.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated