Preprint Article Version 1 This version is not peer-reviewed

Impact of Graphene on the Polarizability of a Neighbour Nanoparticle: A Dyadic Green's Function Study

Version 1 : Received: 20 October 2017 / Approved: 20 October 2017 / Online: 20 October 2017 (10:34:18 CEST)

A peer-reviewed article of this Preprint also exists.

Amorim, B.; Gonçalves, P.A.D.; Vasilevskiy, M.I.; Peres, N.M.R. Impact of Graphene on the Polarizability of a Neighbour Nanoparticle: A Dyadic Green’s Function Study. Appl. Sci. 2017, 7, 1158. Amorim, B.; Gonçalves, P.A.D.; Vasilevskiy, M.I.; Peres, N.M.R. Impact of Graphene on the Polarizability of a Neighbour Nanoparticle: A Dyadic Green’s Function Study. Appl. Sci. 2017, 7, 1158.

Journal reference: Appl. Sci. 2017, 7, 1158
DOI: 10.3390/app7111158

Abstract

We discuss the renormalization of the polarizability of a nanoparticle in the presence of either (i) a continuous graphene sheet or (ii) a plasmonic graphene grating, taking into account retardation effects. Our analysis demonstrates that the excitation of surface plasmon-polaritons in graphene produces a large enhancement of the real and imaginary parts of the renormalized polarizability. We show that the imaginary part can be changed by a factor of up to 100 relatively to its value in the absence of graphene. We also show that the resonance in the case of the grating is narrower than in the continuous sheet. In the case of the grating it is shown that the resonance can be tuned by changing the grating geometric parameters.

Subject Areas

plasmonics; graphene; quantum emitter; Dyadic Green's Function; nanoparticle; polarizability

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.