Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

The Analysis of Nonlinear Vibrations of Top Tensioned Cantilever Pipes Conveying Pressurized Steady Two-Phase Flow under Thermal Loading

Version 1 : Received: 5 October 2017 / Approved: 6 October 2017 / Online: 6 October 2017 (08:31:13 CEST)

A peer-reviewed article of this Preprint also exists.

Adegoke, A.S.; Oyediran, A.A. The Analysis of Nonlinear Vibrations of Top-Tensioned Cantilever Pipes Conveying Pressurized Steady Two-Phase Flow under Thermal Loading. Math. Comput. Appl. 2017, 22, 44. Adegoke, A.S.; Oyediran, A.A. The Analysis of Nonlinear Vibrations of Top-Tensioned Cantilever Pipes Conveying Pressurized Steady Two-Phase Flow under Thermal Loading. Math. Comput. Appl. 2017, 22, 44.

Abstract

This paper studied the nonlinear vibrations of top tensioned cantilevered pipes conveying pressurized steady two-phase flow under thermal loading. The coupled axial and transverse governing partial differential equations of motion of the system were derived based on Hamilton’s mechanics with the centreline assumed to be extensible. Multiple scale perturbation method was used to resolve the governing equations, which resulted to an analytical approach for assessing the natural frequency, mode shape and the nonlinear coupled axial and transverse steady state response of the pipe. The analytical assessment reveals that at some frequencies the system is uncoupled, while at some frequencies a 1:2 coupling exists between the axial and the transverse frequencies of the pipe. Nonlinear frequencies versus the amplitude displacement of the cantilever pipe conveying two-phase flow at super critical mixture velocity for the uncoupled scenario exhibit a nonlinear hardening behaviour, an increment in the void fractions of the two-phase flow resulted to a reduction in the pipe’s transverse vibration frequencies and the coupled amplitude of the system. However, increasing the temperature difference, pressure and the presence of top tension were observed to increase the pipe’s transverse vibration frequencies without a significant change in the coupled amplitude of the system.

Keywords

Hamilton’s principle; Nonlinear vibration; Two-phase flow; Critical mixture velocity; Cantilever pipes; Perturbation method

Subject

Engineering, Mechanical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.