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Abstract 

This paper studied the nonlinear vibrations of top tensioned cantilevered pipes conveying pressurized 
steady two-phase flow under thermal loading. The coupled axial and transverse governing partial 
differential equations of motion of the system were derived based on Hamilton’s mechanics with the 
centreline assumed to be extensible. Multiple scale perturbation method was used to resolve the 
governing equations, which resulted to an analytical approach for assessing the natural frequency, mode 
shape and the nonlinear coupled axial and transverse steady state response of the pipe. The analytical 
assessment reveals that at some frequencies the system is uncoupled, while at some frequencies a 1:2 
coupling exists between the axial and the transverse frequencies of the pipe. Nonlinear frequencies versus 
the amplitude displacement of the cantilever pipe conveying two-phase flow at super critical mixture 
velocity for the uncoupled scenario exhibit a nonlinear hardening behaviour, an increment in the void 
fractions of the two-phase flow resulted to a reduction in the pipe’s transverse vibration frequencies and 
the coupled amplitude of the system. However, increasing the temperature difference, pressure and the 
presence of top tension were observed to increase the pipe’s transverse vibration frequencies without a 
significant change in the coupled amplitude of the system.   
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1. Introduction 

Two-phase flow is a common flow phenomenon in various industrial pipes; in nuclear heat exchangers, 
pipes in process plants, thermal plants, subsea oil and gas explorations and many more. However, in spite 
of the vast occurrences of two-phase flow in pipes, most of the existing publications on the flow induced 
vibrations of pipes conveying fluids focused on the fluidelastic instability of pipes conveying single phase 
flow. Miwa et al. [1] did an in-depth review of the extent of existing work on two-phase flow induced 
vibrations, stating that there exist very few researches on the instability behaviour of pipes due to internal 
two-phase flow. In the review, it was explained that internal two-phase flow induced vibration can be 
initiated by various hydrodynamic phenomena, depending on the geometrical configurations of the flow 
channels and operating conditions, gas-liquid two-phase flow may create vibrations with various modes 
of amplitude and frequency. Monette and Pettigrew [2] presents an excellent experimental work on the 
fluidelastic instability of flexible tubes subjected to two-phase flow which might be one of the premier 
paper on the dynamics of pipe and also reveals the relationship between the void fraction and the linear 
dynamics of the pipe for a two-phase liquid-gas flow. The early studies on the nonlinear dynamics of 
cantilevered pipes conveying single phase flow either studied only the transverse displacement of the pipe 
or considered the longitudinal displacement using the inextensible centerline assumptions [3-5]. However, 
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the pioneering work by Ghayesh et al. [6] studied the nonlinear dynamics of cantilevered extensible pipe 
conveying fluid, with equations of motions of the coupled transverse and longitudinal displacements 
derived using the Lagrange equations for system containing non material volumes and highlighted that 
conversely to inextensible pipe, an extensible pipe elongates in the axial direction as the flow velocity 
increases.  

Luczko et al. [7] highlighted that the dynamic behaviour of continuous systems, such as beams, moving 
tapes or pipes with the flowing fluid is governed by non-linear partial differential equations with 
appropriate boundary and initial conditions. As highlighted by Païdoussis [8], the nonlinear problems of 
pipe conveying fluids cannot be resolved analytically, but recourse need to be taken to adopt specialized 
analytical method like perturbation techniques, numerical time difference methods or a combined 
analytical-numerical method. Some publications have adopted the direct Lagrangian discretization 
method (Galerkin method) to convert the partial differential equations (PDEs) to ordinary differential 
equations (ODE) and then resolve the resulting ODE’s using numerical techniques, Modarres and 
Païdoussis [9], Wang et al. [10], Sinir [11], Ritto et al. [12], Chen et al. [13]. The usage of analytical 
methods like perturbation techniques is highly common with researchers working on nonlinear problems 
Nayfeh [14], Nayfeh [15], Kesimli et al [16], Oz and Boyaci [17] where the solution were sought for by 
an asymptotic expansion or by perturbing the original set of equations in terms of a small parameter 
which is either present in the equation or introduced artificially. Some researchers working on the 
fluidelastic instability of pipes conveying fluids have adopted this technique to resolve the nonlinear 
dynamics of the pipes, some of these are the works of Enz [18] on the simple supported straight pipe 
using perturbation analysis with multiple time-scaled method and comparison with measurements made 
by Coriolis flowmeters,  the study on the transverse vibrations of tension pipes conveying fluid with time 
dependent velocity using the multiple scale perturbation technique by Oz and Pakdemirli. [19], the study 
on the analysis of nonlinear vibrations of a pipe conveying an ideal fluid by Sinir and Demir [20].  

Most of these existing publications on the nonlinear dynamics of cantilevered pipe conveying fluid were 
focused on single phase flow resolving the governing equations using various methods as highlighted in 
the review of literature. However, profoundly among authors who adopted the perturbation approach is 
the study of the uncoupled problem, solving only the transverse vibrations independent of the axial 
vibration. To the best of our knowledge, a perturbation approach for the resolution of the coupled 
nonlinear dynamics of a top tensioned cantilevered pipes conveying pressurized two-phase flow under 
thermal loading is still a reserved topic with possible intriguing outcome. In this paper, the governing 
equation of motion for the nonlinear coupled axial and transverse vibration of cantilever pipe conveying 
two-phase flow is derived and resolved by imposing the method of multiple scales perturbation technique 
directly to the systems equations (direct-perturbation method).  

1 Problem formulation and modelling  
Considering a system of cantilever cylindrical pipe of length (L), having a cross-sectional area (A), mass 
per unit length (mp) and flexural rigidity (EI), conveying multiphase flow, flowing parallel to the pipe’s 
center line. The center line axis of the pipe in its undeformed state is assumed to overlap with the Y-axis 
and the cylinder is assumed to vibrate in the (Y, X) plane (see fig. 1). To derive the system’s governing 
equations of motion, the following basic assumptions were made for the cylinder and the fluid: (i) the 
mean flow velocity is constant; (ii) the cylinder is slender, so that the Euler–Bernoulli beam theory is 
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applicable; (iii) although the deflections of the cylinder may be large, the strains are small; (iv) the 
cylinder centreline is extensible.  

 

 

 

 

 

 

 

 

 

 

Figure 1: System’s Schematics 

The centreline of the cantilever pipe is assumed extensible to account for possible expansion due to the 
high temperature of the fluid content. The strain expressions and the geometric relation of the centreline 
of an extensible pipe are derived as expressed by Semler et al [3]: 

1.1 Derivation of the Equation of Motion  
The equations of motion are derived using the energy method. The energy method is based on the 
Hamilton’s principle, which is defined as the variations of the time derivative of the Lagrangian. This can 
be mathematically expressed as: 

δ න ℒ dt = න ෍ M୨U୨ ቌrሶ୐ + ෍ U୨τ୐୬
୨ୀଵ ቍ δr୐୬

୨ୀଵ  dt,   ୲ଶ
୲ଵ

୲ଶ
୲ଵ                                                                     (1) 

Where n is the number of phases in the fluid, which will be 2 for a two-phase flow M୨ is the mass of the phases in the fluid U୨ is the flow velocity of the phases in the fluid ℒ is the Lagrangian operator expressed in Eq. (2) ℒ = ୤࣮ + ୮࣮ − ୤ࣰ − ୮ࣰ,                                                                                                            (2) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 October 2017                   doi:10.20944/preprints201710.0030.v1

Peer-reviewed version available at Math. Comput. Appl. 2017, 22, 44; doi:10.3390/mca22040044

http://dx.doi.org/10.20944/preprints201710.0030.v1
http://dx.doi.org/10.3390/mca22040044


4 
 

୮࣮ and ୮ࣰ are the kinetic and potential energies of the pipe, and ୤࣮ and ୤ࣰ are the kinetic and potential 
energies associated with the conveyed fluid.  

The following expressions hold: rሶ୐ = uሶ ୐i + vሶ ୐k  and τ୐ = uᇱ୐i + vᇱ୐k                

1.1.1  Kinetic Energy 
The total kinetic energy of the system is the summation of the kinetic energy of the pipe and the kinetic 
energies of the phases/components of the flowing fluid. The velocity vector of the pipe’s centreline is 
expressed as: VሬሬԦ୮ = ∂u∂t ı̂ + ∂v∂t ȷ ̂                                                                                                                   (3) 

Therefore, the kinetic energy of the pipe is expressed as: 

୮࣮ = 12 m୮ න ቈ൬∂u∂t൰ଶ + ൬∂v∂t൰ଶ቉ dx୐
଴                                                                                   (4) 

As illustrated by Semler, the axial elongation of the pipe is complemented by a lateral contraction, due to 
the Poisson effect. This will impact the flow velocity of the fluid phases/components such that: 

෍ U୨ = [(1 + ϵ)/(1 + aϵ)]୬
୨ୀଵ ෍ U଴୨୬

୨ୀଵ                                                                                                (5) 

Where U଴୨ and U୨ are the flow velocities before and after elongation, the subscript (j) is used to identify 
the various phases/components of the conveyed fluid, (ϵ ) is the axial strain and (a) relates to the Poisson 
ratio (v) as a = 1 − 2v; for an extreme case v = 0.5 and a  becomes zero Ghayesh et al [6]. 

The flow velocity relative to the centerline axis of the pipe is expressed as: 

VሬሬԦ୤ = ቐ∂u∂t + ෍ U୨(1 − aϵ) ൬1 + ∂u∂x൰୬
୨ୀଵ ቑ ı̂ + ቐ∂v∂t + ෍ U୨(1 − aϵ) ൬∂v∂x൰୬

୨ୀଵ ቑ ȷ ̂                             (6) 

Therefore, the Kinetic energy of the conveyed fluid is expressed as: 

୤࣮ = 12 ෍ M୨ න ቊ൬∂u∂t൰ଶ + ൬∂v∂t൰ଶ + U୨ଶ ቈ1 + 2 ∂u∂x + ൬∂u∂x൰ଶ − 2a ቆ∂u∂x + 12 ൬∂v∂x൰ଶቇ + ൬∂v∂x൰ଶ቉୐
଴

୬
୨ୀଵ + 2U୨ ൤∂u∂t ൬1 + ∂u∂x൰ + ∂v∂t ∂v∂x൨ቋ dx                                                                    (7) 

1.1.2 Potential Energy 
Semler highlighted that the potential energy is as a result of the elastic deformation of the pipe and the 
effect of gravity and the deformation from elastic behavior of the pipe can be linked to the strain energy. 
This is expressed as: 

୮ࣰ = 12 EA න ϵଶdx୐
଴ + 12 EI න (1 + ϵ)ଶkଶdx ୐

଴                                                                          (8) 
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This is clearly the combinations of the axial strain effect and the bending strain effect where (E) denotes 
the Young’s modulus, (I) denotes the pipe moment of inertia, (A) denotes the cross-sectional area, (ϵ) is 
the axial strain and (k) is the curvature term as expressed by Semler. 

The thermal effect can be introduced by considering the linear strain tensor as a sum of the strain 
contributions from the mechanical stress and the thermal effect. Semler further decomposed the axial 
strain into a steady strain component due to externally applied tension (T଴) and pressure force component (P = pA) and an oscillatory strain component due to the oscillations of the pipe. These can be expressed 
as: 

ϵ୧୨ = ϵ୧୨஢ + ϵ୧୨∆ + T଴ − PEA                                                                                                   (9) 

While the stress contributing strain component is as expressed by Semler as: 

ϵ୧୨஢ = ∂u∂x − 12 ൬∂u∂x൰ ൬߲ݔ߲ݒ൰ଶ + 12 ൬߲ݔ߲ݒ൰ଶ − 18 ൬߲ݔ߲ݒ൰ସ                                                         (10) 

Considering that the gradient of the transverse displacement of the pipe is far greater than the gradient of 
the longitudinal displacement ቀడ௩డ௫ > ப୳ப୶ቁ. Also, the thermal contributing strain component can be 

expressed in terms of the thermal expansivity (ߙ) and the difference in temperatures (∆ܶ) as   ߳௜௝∆ =     (11)                                                                                                                     (ܶ∆ߙ−)

Substituting Eq. (10) and Eq. (11) into Eq. (9) and then substituting Eq. (9) in to Eq. (8), the resulting 
expression is: 

௣ࣰ = 12 ܣܧ න ൤൬ݑᇱ − 12 ᇱଶݒᇱݑ + 12 ᇱଶݒ − 18 ᇱସ൰ݒ + T଴ − ܣܧܲ + ൨ଶ(ܶ∆ߙ−) ௅ݔ݀
଴ + 12 ܫܧ න ᇱᇱଶݒൣ − ᇱݑᇱᇱଶݒ2 − ᇱᇱଶݑᇱᇱଶݒ2 − ௅ ݔᇱᇱ൧݀ݑᇱᇱݒᇱݒ2

଴               (12) 

With the reference plane in the same direction as the gravitational acceleration, the effect of gravity can 
be expressed as: 

௚ࣰ = ݃ ቌ෍ ௝ܯ + ݉௡
௝ୀଵ ቍ න ݔ) + ௅ݔ݀(ݑ

଴                                                                                          (13) 

The variations of the time derivative of the algebraic sum of the kinetic energy and the potential energy of 
the systems gives the expression on the left hand side term of the Hamilton’s equation.   
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1.1.3 Non-conservative work done 
As detailed by Semler for a single phase flow, the right hand side term of the Hamilton’s can be expressed 
for a multiphase flow as: 

EIvᇱᇱᇱ୐ = ෍ M୨Uଶ୨୬
୨ୀଵ න  vᇱ୐ݒߜdt୲ଶ

୲ଵ                                                                                    (14) 
Physically, this implies a non-classical boundary condition at the free end for a discharging cantilever 
pipe. Therefore, a force is imposed at the free end if the velocity of the exiting fluid is not tangential to 
the pipe. However this study assumes that the exiting flow remains tangential to the pipe at the free end, 
therefore classical boundary condition holds at the free end. 

1.2 Equation of motion for multiphase flow 
The equation of motion for an extensible cantilever pipe conveying pressurized unsteady multiphase flow 
under thermal loading can be expressed as: 

ቌ݉ + ෍ ௝௡ܯ
௝ୀଵ ቍ ሷݑ + ෍ M௝ ఫܷሶ௡

௝ୀଵ + ෍ ௝ܯ2 ௝ܷݑሶ ᇱ௡
௝ୀଵ + ෍ ௝௡ܯ

௝ୀଵ ௝ܷଶݑᇱᇱ + ෍ ௝ܯ ఫܷሶ ᇱ௡ݑ
௝ୀଵ − ᇱᇱݑܣܧ − ᇱݒᇱᇱᇱᇱݒ)ܫܧ + (ᇱᇱᇱݒᇱᇱݒ

+ ( ଴ܶ − ܲ − (ܶ∆ߙ)ܣܧ − ᇱᇱݒᇱݒ(ܣܧ − ൫ ଴ܶ − ܲ − ൯ᇱ(ܶ∆ߙ)ܣܧ + ቌ݉ + ෍ ௝௡ܯ
௝ୀଵ ቍ ݃ = 0,     (15)          

ቌ݉ + ෍ ௝௡ܯ
௝ୀଵ ቍ ሷݒ + ෍ ௝ܯ2 ௝ܷݒሶ ᇱ௡

௝ୀଵ + ෍ ௝௡ܯ
௝ୀଵ ௝ܷଶݒᇱᇱ − ෍ ௝௡ܯܽ

௝ୀଵ ௝ܷଶݒᇱᇱ + ෍ ௝ܯ ఫܷሶ ᇱ௡ݒ
௝ୀଵ + ᇱᇱᇱᇱݒܫܧ

− ൫ ଴ܶ − ܲ − ᇱᇱݒ൯(ܶ∆ߙ)ܣܧ − ᇱᇱݒᇱᇱᇱݑ൫3ܫܧ + ᇱᇱݑᇱᇱᇱݒ4 + ᇱᇱᇱᇱݒᇱݑ2 + ᇱᇱᇱᇱݒᇱଶݒ2 + ᇱᇱᇱݒᇱᇱݒᇱݒ8 + +ᇱᇱଷ൯ݒ2 ( ଴ܶ − ܲ − (ܶ∆ߙ)ܣܧ − (ܣܧ ൬ݑᇱݒᇱᇱ + ᇱᇱݑᇱݒ + 32 ᇱᇱ൰ݒᇱଶݒ = 0                   (16) 

The associated boundary conditions are: (0)ݒ = (ܮ)ᇱᇱݒ ݀݊ܽ ᇱ(0)ݒ = (ܮ)ᇱᇱᇱݒ = (0)ݑ  (17)                                                                            0 = (ܮ)ᇱݑ = 0                                                                                                                   (18) 

1.2.1 Dimensionless equation of motion for multiphase flow 
The equation of motion may be rendered dimensionless to make the analysis of the system more robust 
and not constrained to one specific system by introducing the following non-dimensional quantities; 

തݑ = ܮݑ ݒ̅    ,   = ܮݒ ̅ݐ   ,   = ቈ ∑ܫܧ ௝ܯ + ݉቉ଵ ଶൗ ଶܮݐ   ,   ഥܷ௝ = ൤ܯ௝ܫܧ൨ଵ ଶൗ , ܮܷ ߛ =  ∑ ௝ܯ + ܫܧ݉     ,ଷ݃ܮ
௝ߚ  = ∑௝ܯ ௝ܯ + ௝ߖ   ,݉ = ∑௝ܯ ௝ܯ , ߤ :݉ݎ݁ݐ ݃݊݅݌݉ܽܦ = ௝ܯଶට∑൫ܮܥ + ݉൯  ܫܧ

:݊݋݅ݏ݊݁ܶ ଴ߎ = ௢ܶܮଶܫܧ  , ଵߎ :ݕݐ݈ܾ݅݅݅ݔ݈݁ܨ = ܫܧଶܮܣܧ , ଶߎ :݁ݎݑݏ݁ݎܲ = ܫܧଶܮܲ  
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തሷݑ   + ෍ ఫܷഥሶ௡
௝ୀଵ ඥߖ௝ටߚ௝ + 2 ෍ ഥܷ௝௡

௝ୀଵ ඥߖ௝ටߚ௝ݑതሶ ᇱ + ෍ ௝ߖ ఫܷഥ ଶݑതᇱᇱ௡
௝ୀଵ + ෍ ఫܷഥሶ  ඥߖ௝ටߚ௝ݑതᇱ௡

௝ୀଵ − തᇱᇱݑଵߎ − ᇱݒᇱᇱᇱᇱ̅ݒ̅) + (ᇱᇱᇱݒᇱᇱ̅ݒ̅
+ ଴ߎ) − ଶߎ − (ܶ∆ߙ)ଵߎ − ᇱᇱݒᇱ̅ݒ̅(ଵߎ − ൫ߎ଴ − ଶߎ − ൯ᇱ(ܶ∆ߙ)ଵߎ + =ߛ 0,                                                                                                                         (19) 

ሷݒ̅  + 2 ෍ ഥܷ௝௡
௝ୀଵ ඥߖ௝ටߚ௝̅ݒሶ ᇱ + ෍ ௝ߖ ఫܷഥ ଶ̅ݒᇱᇱ௡

௝ୀଵ − ܽ ෍ ௝ߖ ఫܷഥ ଶ̅ݒᇱᇱ௡
௝ୀଵ + ෍ ఫܷഥሶ  ඥߖ௝ටβ௝̅ݒᇱ௡

௝ୀଵ − ൫ߎ଴ − ଶߎ − ᇱᇱݒ൯(ܶ∆ߙ)ଵߎ + ᇱᇱᇱᇱݒ̅
− ൫3ݑതᇱᇱᇱ̅ݒᇱᇱ + തᇱᇱݑᇱᇱᇱݒ4̅ + ᇱᇱᇱᇱݒതᇱ̅ݑ2 + ᇱᇱᇱᇱݒᇱଶ̅ݒ2̅ + ᇱᇱᇱݒᇱᇱ̅ݒᇱ̅ݒ8̅ + +ᇱᇱଷ൯ݒ2̅ ଴ߎ) − ଶߎ − (ܶ∆ߙ)ଵߎ − (ଵߎ ൬ݑതᇱ̅ݒᇱᇱ + തᇱᇱݑᇱݒ̅ + 32 ᇱᇱ൰ݒᇱଶ̅ݒ̅ = 0             ( 20) 

The dimensionless boundary conditions are: ̅(0)ݒ = (ܮ)ᇱᇱݒ̅ ݀݊ܽ ᇱ(0)ݒ̅ = (ܮ)ᇱᇱᇱݒ̅ = ത(0)ݑ (21)                                                                           0 = (ܮ)തᇱݑ = 0                                                                                                                   (22) 

In these equations, ݑത ܽ݊݀ ̅ݒ are respectively, the dimensionless displacements in the longitudinal and 
transverse direction, ( ഥܷ௝) is the flow velocities of the constituent phases/components used in the 
parametric studies of the dynamics of the system, (ߚ௝) is the mass ratio same as in single phase flows as 
derived by Semler and Paidoussis [8], (ߖ௝) is another mass ratio which is unique to multiphase flow 
relating the fluid mass independent of the mass of the pipe, (ߛ) is the gravity term and (ߎ଴, ,ଵߎ  (ଶߎ
represent the Tension term, Flexibility term and the pressurization term respectively.  

1.2.2 Dimensionless Equation of motion for two-phase Flow  
The dimensionless governing equation can be reduced to that of a two-phase as: ݑതሷ + ଵܷതതതሶ ඥߖଵඥߚଵ + ܷଶതതതሶ ඥߖଶඥߚଶ + 2 ഥܷଵඥߖଵඥߚଵݑതሶ ᇱ + 2 ഥܷଶඥߖଶඥߚଶݑതሶ ᇱ + ଵߖ ଵܷതതതଶݑതᇱᇱ + തᇱᇱݑଶܷଶതതതଶߖ +ଵܷതതതሶ  ඥߖଵඥߚଵݑതᇱ + ܷଶതതതሶ  ඥߖଶඥߚଶݑതᇱ − തᇱᇱݑଵߎ − ᇱݒᇱᇱᇱᇱ̅ݒ̅) + (ᇱᇱᇱݒᇱᇱ̅ݒ̅ + ଴ߎ) − ଶߎ − (ܶ∆ߙ)ଵߎ − ᇱᇱݒᇱ̅ݒ̅(ଵߎ −൫ߎ଴ − ଶߎ − ൯ᇱ(ܶ∆ߙ)ଵߎ + ߛ = ሷݒ̅  (23)                                                                                         ,0 + 2 ഥܷଵඥߖଵඥߚଵ̅ݒሶ ᇱ + 2 ഥܷଶඥߖଶඥߚଶ̅ݒሶ ᇱ + ଵߖ ଵܷതതതଶ̅ݒᇱᇱ + ଶߖ ଶܷതതതଶ̅ݒᇱᇱ − ଵߖܽ ଵܷതതതଶ̅ݒᇱᇱ − ᇱᇱݒଶܷଶതതതଶ̅ߖܽ +ଵܷതതതሶ  ඥߖଵඥߚଵ̅ݒᇱ + ܷଶതതതሶ  ඥߖଶඥߚଶ̅ݒᇱ − ൫ߎ଴ − ଶߎ − ᇱᇱݒ൯(ܶ∆ߙ)ଵߎ + ᇱᇱᇱᇱݒ̅ − ൫3ݑതᇱᇱᇱ̅ݒᇱᇱ + തᇱᇱݑᇱᇱᇱݒ4̅ + ᇱᇱᇱᇱݒതᇱ̅ݑ2 ᇱᇱᇱᇱݒᇱଶ̅ݒ2̅+ + ᇱᇱᇱݒᇱᇱ̅ݒᇱ̅ݒ8̅ + ᇱᇱଷ൯ݒ2̅ + ଴ߎ) − ଶߎ − (ܶ∆ߙ)ଵߎ − (ଵߎ ቀݑതᇱ̅ݒᇱᇱ + തᇱᇱݑᇱݒ̅ + ଷଶ ᇱᇱቁݒᇱଶ̅ݒ̅ = 0   (24) 
The associated dimensionless boundary conditions are: ̅(0)ݒ = (ܮ)ᇱᇱݒ̅ ݀݊ܽ ᇱ(0)ݒ̅ = (ܮ)ᇱᇱᇱݒ̅ = ത(0)ݑ (25)                                                       0 = (ܮ)തᇱݑ = 0                                                                                               (26) 
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1.2.3 Governing Equation for a steady two-phase flow  

തሷݑ + ഥܷଵݑ21ܥതሶ ᇱ + ഥܷଶݑ22ܥതሶ ᇱ + 31ܥ ଵܷതതതଶݑതᇱᇱ + 32ܥ ଶܷതതതଶݑതᇱᇱ − തᇱᇱݑ5ܥ − ᇱݒᇱᇱᇱᇱ̅ݒ̅) + (ᇱᇱᇱݒᇱᇱ̅ݒ̅ + ᇱᇱݒᇱ̅ݒ6̅ܥ − 7ᇱܥ + ߛ = 0  (27) 

ሷݒ̅ + ഥܷଵݒ21̅ܥሶ ᇱ + ഥܷଶݒ22̅ܥሶ ᇱ + 31ܥ ଵܷതതതଶ̅ݒᇱᇱ + 32ܥ ଶܷതതതଶ̅ݒᇱᇱ − 31ܥܽ ଵܷതതതଶ̅ݒᇱᇱ − 32ܥܽ ଶܷതതതଶ̅ݒᇱᇱ − ᇱᇱݒ7ܥ + ᇱᇱᇱᇱݒ̅ − ൫3ݑതᇱᇱᇱ̅ݒᇱᇱ തᇱᇱݑᇱᇱᇱݒ4̅+ + ᇱᇱᇱᇱݒതᇱ̅ݑ2 + ᇱᇱᇱᇱݒᇱଶ̅ݒ2̅ + ᇱᇱᇱݒᇱᇱ̅ݒᇱ̅ݒ8̅ + ᇱᇱଷ൯ݒ2̅ + 6ܥ ቀݑതᇱ̅ݒᇱᇱ + തᇱᇱݑᇱݒ̅ + ଷଶ ᇱᇱቁݒᇱଶ̅ݒ̅ = 0       (28) 

For a steady flow, velocities are not changing with time, therefore  ଵܷതതതሶ = ଶܷതതതሶ = 0         (29) 

The associated boundary conditions are: ̅(0)ݒ = (ܮ)ᇱᇱݒ̅ ݀݊ܽ ᇱ(0)ݒ̅ = (ܮ)ᇱᇱᇱݒ̅ = ത(0)ݑ (30)                                                                                  0 = (ܮ)തᇱݑ = 0                                                                                                                          (31) 

Equations (27) to (31) are obtained using the notations: 11ܥ = ඥߖଵඥߚଵ , 12ܥ = ඥߖଶඥߚଶ , 21ܥ = 2ඥߖଵඥߚଵ , 22ܥ = 2ඥߖଶඥߚଶ , 31ܥ = 32ܥ   ଵߖ = ,ଶߖ 5ܥ = ,ଵߎ 6ܥ = ଴ߎ) − ଶߎ − (ܶ∆ߙ)ଵߎ − ,(ଵߎ 7ܥ = ଴ߎ − ଶߎ −     (ܶ∆ߙ)ଵߎ
1.3 Empirical gas–liquid two-phase flow model 
The components velocities in terms of the superficial velocities are expressed as: 

௚ܸ = ௚ܷ݂ݒ,    ௟ܸ = ௟ܷ(1 −  (32)                                                                                                   (݂ݒ

Where ௚ܷ and ௟ܷ are the superficial flow velocities. 

Adopting the Chisholm empirical relations as presented in [24], 

Void fraction:  

݂ݒ = ቈ1 + ට1 − x ൬1 − ఘ೗ఘ೒൰ ቀଵି୶୶ ቁ ቀఘ೒ఘ೗ ቁ቉ିଵ  =  ୚୭୪୳୫ୣ ୭୤ ୥ୟୱ୚୭୪୳୫ୣ ୭୤ ୥ୟୱା୚୭୪୳୫ୣ ୭୤  ୐୧୯୳୧ୢ          (33) 

Slip Ratio: 

ܵ = ௚ܸܸ௟ = ቈ1 − x ቆ1 − ௚ቇ቉ଵ/ଶߩ௟ߩ                                                                                                                (34) 

The vapour quality: (x) 

The densities of the liquid and gas phases respectively: (ߩ௟ and ߩ௚)   
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Mixture Velocity:  ்ܸ = ௚ܷ݂ݒ + ௟ܷ(1 −  (35)                                                                                                      (݂ݒ

Individual Velocities: 

௟ܸ = ்ܸܵ + 1 , ௚ܸ = S்ܸܵ + 1                                                                                                          (36) 

For various void fractions (0.3, 0.4, and 0.5) and a series of mixture velocities, the corresponding slip 
ratio and individual velocities are estimated and used for numerical calculations. 

 
2 Method of Solution 
Exact solutions of nonlinear equations are almost not available; an approximate solution will be sought 
for by utilizing the multiple time scale perturbation technique. This approach is applied directly to the 
partial differential equations (27) and (28), given that the common method of discretizing the equations 
first and then applying perturbation method yields less accurate results for finite mode truncations and 
higher order perturbation schemes [14, 15, 16 and 17].  

Adopting perturbation techniques, it is necessary to decide the terms to be considered small or weak. 
However, the study considers the contributions of the nonlinear terms, gradient term and gravity term to 
be small compared to the linear terms. ݑതሷ + ഥܷଵݑ21ܥതሶ ᇱ + ഥܷଶݑ22ܥതሶ ᇱ + 31ܥ ଵܷതതതଶݑതᇱᇱ + തᇱᇱݑ32ܷଶതതതଶܥ − തᇱᇱݑ5ܥ + ᇱݒᇱᇱᇱᇱ̅ݒ̅)−൫ߝ + (ᇱᇱᇱݒᇱᇱ̅ݒ̅ + ᇱᇱݒᇱ̅ݒ6̅ܥ 7ᇱܥ− + ௝൯ߛ = ሷݒ̅ (37)          ,0 + ഥܷଵݒ21̅ܥሶ ᇱ + ഥܷଶݒ22̅ܥሶ ᇱ + 31ܥ ଵܷതതതଶ̅ݒᇱᇱ + ᇱᇱݒ32ܷଶതതതଶ̅ܥ − 31ܥܽ ଵܷതതതଶ̅ݒᇱᇱ − ᇱᇱݒ32ܷଶതതതଶ̅ܥܽ − ᇱᇱݒ7ܥ + ᇱᇱᇱᇱݒ̅ ߝ+ ൬−൫3ݑതᇱᇱᇱ̅ݒᇱᇱ + തᇱᇱݑᇱᇱᇱݒ4̅ + ᇱᇱᇱᇱݒതᇱ̅ݑ2 + ᇱᇱᇱᇱݒᇱଶ̅ݒ2̅ + ᇱᇱᇱݒᇱᇱ̅ݒᇱ̅ݒ8̅ + ᇱᇱଷ൯ݒ2̅ + 6ܥ ቀݑതᇱ̅ݒᇱᇱ + തᇱᇱݑᇱݒ̅ +ଷଶ ᇱᇱቁ൰ݒᇱଶ̅ݒ̅ = 0                 (38) 

We seek an approximate solution for ݑത ܽ݊݀ ̅ݒ  in the form: ݑത = )ത଴ݑ ଴ܶ, ଵܶ) + )തଵݑߝ ଴ܶ, ଵܶ) + )തଶݑଶߝ ଴ܶ, ଵܶ) + ݒ̅ (39)                                                (ߝ)ܱ = )଴ݒ̅ ଴ܶ, ଵܶ) + )ଵݒ̅ߝ ଴ܶ, ଵܶ) + )ଶݒଶ̅ߝ ଴ܶ, ଵܶ) +  (40)                                                (ߝ)ܱ

Two time scales are needed ଴ܶ = and ଵܶ  ݐ =  ݐߝ

Where ߝ is a small dimensionless measure of the amplitude of ݑത and ̅ݒ, used as a book-keeping parameter. 
Then, the time derivatives are: ݀݀ݐ = ଴ܦ + εܦଵ + εଶܦଶ + ଶݐଶ݀݀ (41)                                                                             (ߝ)ܱ  = ଴ଶܦ + 2εܦ଴ܦଵ + εଶ(ܦଵ ଶ + (ଶܦ଴ܦ2 +  (42)                                          (ߝ)ܱ

ܹℎ݁ܦ ݁ݎ௡ = డడ ೙்   
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Substituting Eq. (42), Eq. (41), Eq. (40) and Eq. (39) into Eq. (37) and Eq. (38) and equating the 
coefficients of (ߝ) to zero and one respectively: 

U-Equation: ܱ(ε଴).      ܦ଴ଶݑത଴ + ത଴ᇱݑ଴ܦ21ܥ ഥܷଵ + ത଴ᇱᇱݑ଴ܦ22ܥ ഥܷଶ + ത଴ᇱᇱݑ31ܥ ഥܷଵଶ + ′ത଴ᇱݑ32ܥ ഥܷଶଶ − ത଴ᇱᇱݑ5ܥ = 0        (43) ܱ(εଵ).     ܦ଴ଶݑതଵ + തଵᇱݑ଴ܦ21ܥ ഥܷଵ + തଵᇱݑ଴ܦ22ܥ ഥܷଶ + ത଴ݑ଴ܦଵܦ2 + തଵᇱᇱݑ31ܥ ഥܷଵଶ + തଵᇱᇱݑ32ܥ ഥܷଶଶ + C21ܦ଴ݑത଴ᇱ ഥܷଵ ത଴ᇱݑ଴ܦ22ܥ+ ഥܷଶ − തଵᇱᇱݑ5ܥ − ଴ᇱݒ଴ᇱᇱᇱᇱ̅ݒ̅ − C7ᇱ + ߛ − ଴ᇱᇱᇱݒ଴ᇱᇱ̅ݒ̅ + ଴ᇱᇱݒ଴ᇱ̅ݒ6̅ܥ = 0                (44) 

V-Equation: ܱ(ε଴).        ܦ଴ଶ̅ݒ଴ − ଴′ᇱݒ7̅ܥ + ଴ᇱᇱᇱᇱݒ̅ + ଴ᇱݒ଴̅ܦ21ܥ ഥܷଵ + ଴ᇱݒ଴̅ܦ22ܥ ഥܷଶ + ଴ᇱᇱݒ31̅ܥ ഥܷଵଶ + ଴ᇱᇱݒ32̅ܥ ഥܷଶଶ − ଴ᇱᇱݒ31̅ܥܽ ഥܷଵଶ ଴ᇱᇱݒ32̅ܥܽ− ഥܷଶଶ = 0                                                                                                                        (45) ܱ(εଵ).       ܦ଴ଶ̅ݒଵ − ଵᇱᇱݒ7̅ܥ + ଵᇱᇱᇱᇱݒ̅ − ଴ᇱᇱᇱᇱݒത଴ᇱ̅ݑ2 − ଴ᇱᇱᇱݒത଴ᇱᇱ̅ݑ4 − ଴ᇱᇱᇱݒ଴ᇱᇱ̅ݒ3̅ − ଴ଷᇱᇱݒ2̅ + ଴ݒଵ̅ܦ଴ܦ2 + ଵᇱᇱݒ31̅ܥ ഥܷଵଶ ଵᇱᇱݒ32̅ܥ+ ഥܷଶଶ − ଴ᇱᇱᇱݒ଴ᇱᇱ̅ݒ଴ᇱ̅ݒ8̅ + ଴ᇱᇱݒത଴ᇱ̅ݑ6ܥ + ଴ᇱݒത଴ᇱᇱ̅ݑ6ܥ + ଷଶ ଴ᇱᇱݒ଴ଶᇱ̅ݒ6̅ܥ + ଴ᇱݒ଴̅ܦ21ܥ ഥܷଵ + ଴ᇱݒ଴̅ܦ22ܥ ഥܷଶ ଴ᇱݒଵ̅ܦ21ܥ+ ഥܷଵ + ଴ᇱݒଵ̅ܦ22ܥ ഥܷଶ − ଵᇱᇱݒ31̅ܥܽ ഥܷଵଶ − ଵᇱᇱݒ32̅ܥܽ ഥܷଶଶ = 0                                      (46)      

The order zero problems for both the axial and transverse vibration of the cantilever pipe have the form of 
an undamped and unforced flow induced vibration problem. This will be used to estimate the linear 
natural frequencies and mode shapes while the order problem will be solved to obtain the amplitude of the 
nonlinear response of the pipe. 

2.1 Linear Analysis 
The leading order equations present a set of linear equations which relates the flow velocity generated 
forces (Coriolis and Centrifugal forces) to the stiffness of the pipe and not neglecting the mass ratios. 
These set of linear equations exhibits the form of an eigenvalue problem, which upon resolution will 
produce the natural frequency, mode shapes and also predict the stability of the system,  

2.1.1 Natural frequencies and modal functions  
Estimation of the Natural frequencies and modal function is an order zero problem that can be determined 
by resolving Eq. (43) and Eq. (45).  
The homogeneous solution of the leading order equations Eq. (43) and Eq. (45) can be expressed as: ݑത(ݔ, ଴ܶ, ଵܶ)଴ = ௡(ݔ)߶ ௡߱݅)݌ݔ݁ ଴ܶ) + ,ݔ)ݒ̅ (47)                                                         ܥܥ ଴ܶ, ଵܶ)଴ = ௡(ݔ)ߟ ௡ߣ݅)݌ݔ݁ ଴ܶ) +  (48)                                                           ܥܥ

Where (ܥܥ) is the complex conjugate, ߶(ݔ)௡ ܽ݊݀ (ݔ)ߟ௡ are the complex modal functions for the axial 
and transverse vibrations for each mode (n) and ߱௡ ܽ݊݀ ߣ௡ are the eigenvalues for the axial and 
transverse vibrations for each mode (n).The eigenvalues are complex values with complex conjugate pair 
of solutions which can be expressed as: ߱௡ = ܴ݁(߱௡) + ௡തതതത߱ ݀݊ܽ (௡߱)݉ܫ݅ = ܴ݁(߱௡) − ௡ߣ (௡߱)݉ܫ݅ = ܴ݁(߱௡) + ௡തതതߣ ݀݊ܽ (௡ߣ)݉ܫ݅ = (௡ߣ)ܴ݁ −  (௡ߣ)݉ܫ݅
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The real parts of the eigenvalues are associated with the natural frequency of oscillation and the 
imaginary part with the damping. 

Substituting Eq. (47) and Eq. (48) into Eq. (43) and Eq. (45) respectively, results to: ቀ31ܥ ഥܷଵଶ + 32ܥ ഥܷଶଶ − 5ቁܥ ௡ᇱᇱ(ݔ)߶ + 21ܥ) ഥܷଵ + 22ܥ ഥܷଶ)݅߱௡߶(ݔ)௡ᇱ − ௡߱௡ଶ(ݔ)߶    = 0      (49)  

௡ᇱᇱᇱᇱ(ݔ)ߟ + ቀ31ܥ ഥܷଵଶ + 32ܥ ഥܷଶଶ − 7ܥ − 31ܥܽ ഥܷଵଶ − 32ܥܽ ഥܷଶଶቁ ௡ᇱᇱ(ݔ)ߟ + 21ܥ) ഥܷଵ + 22ܥ ഥܷଶ)݅ߣ௡(ݔ)ߟ௡ᇱ ௡ଶߣ௡(ݔ)ߟ− = 0                                                                                                                                                  (50)  
 
The general solution to the ordinary differential equations Eq. (49) and Eq. (50) are expressed as:  ߶(ݔ)௡ = 1௡ܩ (ݔଵ݇݅)݌ݔ݁ + 2௡ܩ ௡(ݔ)ߟ (51)                                                                              (ݔଶ݇݅)݌ݔ݁ = (ݔଵݖ݅)݌ݔ݁)1ܪ + (ݔଶݖ݅) ݌ݔ2݁ܪ + 3ܪ (ݔଷݖ݅)݌ݔ݁ + ݔ4݁ܪ  (52)                     (ݔସݖ݅)݌
 

2.1.2 Solution to axial vibration problem 
Substituting Eq. (51) into Eq. (49) gives a quadratic relation of the form: 

ቀ5ܥ − 31ܥ ഥܷଵଶ − 32ܥ ഥܷଶଶቁ ௝݇ଶ − 21ܥ) ഥܷଵ + 22ܥ ഥܷଶ)݅߱௡ ௝݇ − ߱௡ଶ = 0                                      (53)  

Solving the quadratic equation (53) for the wave numbers (݇௝) as a function of the eigenvalue (߱௡): 
 

݇ଵ = ߱௡ ێێۏ
21ܥۍێێ ഥܷଵ2 + 22ܥ ഥܷଶ2 + ට21ܥଶ ഥܷଵଶ + 22ܥ21ܥ2 ഥܷଵ ഥܷଶ + 22ଶܥ ഥܷଶଶ − 31ܥ4 ഥܷଵଶ − 32ܥ4 ഥܷଶଶ + 5ܥ52ܥ4 − 31ܥ ഥܷଵଶ − 32ܥ ഥܷଶଶ ۑۑے

 (54)   ېۑۑ

 

݇ଶ = ߱௡ ێێۏ
21ܥۍێێ ഥܷଵ2 + 22ܥ ഥܷଶ2 − ට21ܥଶ ഥܷଵଶ + 22ܥ21ܥ2 ഥܷଵ ഥܷଶ + 22ଶܥ ഥܷଶଶ − 31ܥ4 ഥܷଵଶ − 32ܥ4 ഥܷଶଶ + 5ܥ52ܥ4 − 31ܥ ഥܷଵଶ − 32ܥ ഥܷଶଶ ۑۑے

 (55)    ېۑۑ

 

In order to obtain the eigenvalue, Eq. (51) is substituted into the boundary conditions in Eq. (31): ߲߶(݈, ݔ߲(ݐ = 0 ܽ݊݀ ߶(0, (ݐ = 1ܩ  (56)                                                                                   0 + 2ܩ = 1݇1݅ܩ   ݀݊ܽ   (57)                                                                                                                0 (ଵ݇ܮ݅)݌ݔ݁ + 2݇2݅ܩ (ଶ݇ܮ݅)݌ݔ݁ = 0                                                          (58)  
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In matrix form: ൬ 1                                   1݅݇ଵ݁݌ݔ (݅݇ܮଵ)       ݅݇ଶ݁݌ݔ (݅݇ܮଶ)൰ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ஽ ቀ2ܩ1ܩቁ = 0                                                       (59) 

For a non-trivial solution, the determinant of (D) must varnish;  −݅݇ଵ (ଵ݇ܮ݅)݌ݔ݁ + ݅݇ଶ (ଶ݇ܮ݅)݌ݔ݁ = 0                                                                    (60) 

Substituting Eq. (54) and Eq. (55) into Eq. (60) and solving for the eigenvalue: 

߱௡ = ݊ߨ2 − ݅. ݈݊ ቀܾܽቁ(ܽ − ܮ(ܾ , ݊ = 1,2,3, …                                                                   (61) 

 
Where:              
 

ܽ = 21ܥ   ഥܷଵ2 + 22ܥ ഥܷଶ2 + ට21ܥଶ ഥܷଵଶ + 22ܥ21ܥ2 ഥܷଵ ഥܷଶ + 22ଶܥ ഥܷଶଶ − 31ܥ4 ഥܷଵଶ − 32ܥ4 ഥܷଶଶ + 5ܥ52ܥ4 − 31ܥ ഥܷଵଶ − 32ܥ ഥܷଶଶ , 
 

ܾ = 21ܥ ഥܷଵ2 + 22ܥ ഥܷଶ2 − ට21ܥଶ ഥܷଵଶ + 22ܥ21ܥ2 ഥܷଵ ഥܷଶ + 22ଶܥ ഥܷଶଶ − 31ܥ4 ഥܷଵଶ − 32ܥ4 ഥܷଶଶ + 5ܥ52ܥ4 − 31ܥ ഥܷଵଶ − 32ܥ ഥܷଶଶ  

 
Eq. (61) is the pipe’s axial vibration eigenvalue. Solving Eq. (57) and Eq. (58) gives the constants G1 and 
G2. Therefore, the modal function for the axial vibration of the pipe is expressed as: ߶(ݔ)௡ = 1௡ܩ (ݔଵ݇݅)݌ݔ݁ + 2௡ܩ  (62)                                                     (ݔଶ݇݅)݌ݔ݁

Substituting Eq. (51) into Eq. (47) yields: 
,ݔ)തݑ  ଴ܶ)଴ = ∑ ௝௡ܩ ൫݅݌ݔ݁ ௝݇௡ݔ൯ ௡߱݅)݌ݔ݁ ଴ܶ) ଶ௝ୀଵ = ∑ ௝௡ܩ ൫݉ܫ−൫݌ݔ݁ ௝݇௡ݔ൯ −ଶ௝ୀଵ݉ܫ(߱௡ ଴ܶ)൯ ൫݅(ܴe൫݌ݔ݁ ௝݇௡ݔ൯ + ܴ݁(߱௡ ଴ܶ))൯   (63)  

It can be observed from Eq. (63) that the real part is the natural frequency and the imaginary part is the 
amplitude. However as the mixture velocity is varied, a critical value of the mixture velocity is attained 
when the imaginary parts of any of the eigenvalues (߱௡) will have a negative value which will cause the 
axial displacement (ݑത) to grow exponentially in time and this linearly signifies the onset of the system’s 
oscillatory instability. 
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2.1.3 Solution to transverse vibration problem 
Substituting Eq. (52) into Eq. (50) gives a quartic relation: ݖସ௝௡ + ቀ7ܥ − 31ܥ ഥܷଵଶ − 32ܥ ഥܷଶଶ + 31ܥܽ ഥܷଵଶ + 32ܥܽ ഥܷଶଶቁ ଶ௝௡ݖ − 21ܥ) ഥܷଵ + 22ܥ ഥܷଶ)ݖ௝௡ߣ௡ − ଶ௡ߣ = 0   (64) ݆ = 1,2,3,4 ܽ݊݀ ݊ = 1,2,3,4,5 …  

In order to obtain the eigenvalue, Eq. (52) is substituted into the boundary conditions in Eq. (30): 

This gives four algebraic equations which can be expressed in matrix form as: 

ێێۏ
ێ 1 1 1 ଵ௡ݖ1 ଶ௡ݖ ଷ௡ݖ .ଶ(ଵ௡ݖ)ସ௡ݖ exp (݅. (ଵ௡ݖ .ଶ(ଶ௡ݖ) exp (݅. (ଶ௡ݖ .ଶ(ଷ௡ݖ) exp (݅. (ଷ௡ݖ .ଶ(ସ௡ݖ) exp (݅. .ଷ(ଵ௡ݖ)(ସ௡ݖ exp (݅. (ଵ௡ݖ .ଷ(ଶ௡ݖ) exp (݅. (ଶ௡ݖ .ଷ(ଷ௡ݖ) exp (݅. (ଷ௡ݖ .ଷ(ସ௡ݖ) exp (݅. ۑۑے(ସ௡ݖ

ۑ
ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥீ

 . ൦ . 4௡൪ܪ3௡ܪ2௡ܪ1 1௡ܪ =  ൮0000൲  (65) 

For a non-trivial solution, the determinant of (G) must varnish, That is: (ܩ)ܶܧܦ = 0                                                                                                                               (66) 

In order to find modal solutions of  (ߣ௡), Eq. (64) and Eq. (65) must be solved simultaneously, this can be 
solved numerically using nonlinear numerical routine. 
The mode function of the transverse vibration corresponding to the nth eigenvalue is expressed as: ƞ(ݔ)௡ = .1௡ܪ  [݁௫ .௭భ೙ .௜ − ܣ) + ܤ + ܥ + (ܦ − ܣ (67)                                                          [ܧ =  ௘ೣ .೥ర೙ .೔.  [௘ ೥భ೙ .೔.(௭భ೙)య.௭మ೙ି  ௘ ೥భ೙ .೔.(௭భ೙)య.  ௭య೙ି  ௘ ೥భ೙ .೔ .  ௭ర೙.(௭భ೙)మ .௭మ೙ (௭మ೙ି ௭ర೙).(௭య೙ି ௭ర೙) .[௘ ೥మ೙ .೔.(௭మ೙)మି ௘ ೥య೙ .೔ .(௭య೙)మ]   

ܤ =  ௘ೣ .೥ర೙ .೔.  [௘ ೥భ೙ .೔.௭ర೙.(௭భ೙)మ.௭య೙ି  ௘ ೥మ೙ .೔.௭భ೙.(௭మ೙)యା  ௘ ೥మ೙ .೔ .  ௭ర೙. ௭భ೙.(௭మ೙)మ  (௭మ೙ି ௭ర೙).(௭య೙ି ௭ర೙) .[௘ ೥మ೙ .೔.(௭మ೙)మି ௘ ೥య೙ .೔ .(௭య೙)మ]   

ܥ =  ௘ೣ .೥ర೙ .೔.  [௘ ೥య .೔.௭భ೙.(௭య೙)యି  ௘ ೥య .೔.௭ర೙.௭భ೙.(௭య೙)మା  ௘ ೥మ೙ .೔ .(௭మ೙)య.௭య೙  (௭మ೙ି ௭ర೙).(௭య೙ି ௭ర೙) .[௘ ೥మ೙ .೔.(௭మ೙)మି ௘ ೥య೙ .೔ .(௭య೙)మ]   

ܦ =  ௘ೣ .೥ర೙ .೔.  [ି௘ ೥మ೙ .೔.௭ర೙ .(௭మ೙)మ.௭య೙ି  ௘ ೥య .೔.௭మ೙.(௭య೙)యା  ௘ ೥య .೔ .௭ర೙.௭మ೙.(௭య೙)మ   (௭మ೙ି ௭ర೙).(௭య೙ି ௭ర೙) .[௘ ೥మ೙ .೔.(௭మ೙)మି ௘ ೥య೙ .೔ .(௭య೙)మ]   

ܧ =  ௘ೣ .೥మ೙ .೔.(௭భ೙ି ௭ర೙).[௘ ೥భ .೔.  (௭భ೙)మି  ௘ ೥య .೔.(௭య೙)మ]   (௭మ೙ି ௭ర೙).  [௘ ೥మ .೔.(௭మ೙)మି ௘ ೥య .೔ .(௭య೙)మ] +  ௘ೣ .೥య .೔.(௭భ೙ି ௭ర೙).[௘ ೥భ೙ .೔.  (௭భ೙)మି  ௘೥మ೔.(௭మ೙)మ]   (௭య೙ି ௭ర೙).  [௘ ೥మ .೔.(௭మ೙)మି ௘ ೥య .೔ .(௭య೙)మ]   

 
Substituting Eq. (52) into Eq. (48) yields: vത(ݔ, ଴ܶ)଴ = ∑ ௝௡ܪ ൯ݔ௝௡ݖ൫݅݌ݔ݁ ௡ߣ݅)݌ݔ݁ ଴ܶ) ସ௝ୀଵ = ∑ ௝௡ܪ ൯ݔ௝௡ݖ൫݉ܫ−൫݌ݔ݁ −ସ௝ୀଵߣ)݉ܫ௡ ଴ܶ)൯ ൯ݔ௝௡ݖ൫݅(ܴ݁൫݌ݔ݁ + ௡ߣ)ܴ݁ ଴ܶ))൯                         (68)  

It can be observed from Eq. (68) that the real part is the natural frequency and the imaginary part is the 
amplitude. However as the mixture velocity is varied, a critical value of the mixture velocity is attained 
when the imaginary parts of any of the eigenvalues (ߣ௡) will have a negative value which will cause the 
transverse displacement (̅ݒ) to grow exponentially in time and this linearly signifies the onset of the 
system’s flutter instability. 
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2.2 Nonlinear Analysis 

Linear analysis of the system is sufficient for the prediction of the critical velocity at which instability 
will occur but cannot predict the post buckling behaviour. Linear theory has shown that buckling 
amplitudes will grow unboundedly with time after the critical velocity, however, as amplitudes grow, 
effect of nonlinearities comes into play. This predictably limits the growth to some finite value [21-23]. 

2.2.1 Nonlinear axial and transverse vibration problem 

The solution to the nonlinear axial and transverse vibration problem by seeking an approximate solution 
for ݑത ܽ݊݀ ̅ݒ  of the form: ݑത = )ത଴ݑ ଴ܶ, ଵܶ) + )തଵݑߝ ଴ܶ, ଵܶ) + )തଶݑଶߝ ଴ܶ, ଵܶ) + ݒ̅ (69)                                        (ߝ)ܱ = )଴ݒ̅ ଴ܶ, ଵܶ) + )ଵݒ̅ߝ ଴ܶ, ଵܶ) + )ଶݒଶ̅ߝ ଴ܶ, ଵܶ) +  (70)                                        (ߝ)ܱ
 
The zero order solutions produced the undamped and uncoupled linear solution of the axial and transverse 
vibration respectively as: ݑത(ݔ, ଴ܶ, ଵܶ)଴ = (ݔ)߶ ܺ( ଵܶ)݁݌ݔ(݅߱ ଴ܶ) + ,ݔ)ݒ̅ (71)                                                      ܥܥ ଴ܶ, ଵܶ)଴ = )ܻ(ݔ)ߟ ଵܶ) ߣ݅)݌ݔ݁ ଴ܶ) +  (72)                                                        ܥܥ
 
Where X and Y are unknown complex-valued functions of the slow time scale T1, (ܥܥ) is the complex 
conjugate, ߶(ݔ) ܽ݊݀ (ݔ)ߟ are the modal functions for the axial and transverse vibrations for and ߱ ߣ ݀݊ܽ(߱)ܴ݁= =  are the natural frequencies for the axial (The real parts of the complex frequencies) (ߣ)ܴ݁
and transverse vibrations. 

Substituting Eq. (71) and Eq. (72) into the equations (44) and (46) gives; ܦ଴ଶݑതଵ − തଵᇱᇱݑ5ܥ + തଵᇱݑ଴ܦ21ܥ ഥܷଵ + തଵᇱݑ଴ܦ22ܥ ഥܷଶ + തଵᇱᇱݑ31ܥ ഥܷଵଶ + തଵᇱᇱݑ32ܥ ഥܷଶଶ = − ቀ21ܥ డ௑(்ଵ)డ்ଵ డథ(௫)డ௫ ഥܷଵ 22ܥ+ డ௑(்ଵ)డ்ଵ డథ(௫)డ௫ ഥܷଶ + 2݅ డ௑(்ଵ)డ்ଵ ߱ቁ ߱݅)݌ݔ݁ ଴ܶ) + ܻ(ܶ1)ଶ ቀడఎ(௫)డ௫ డరఎ(௫)డ௫ర + డమఎ(௫)డ௫మ డయఎ(௫)డ௫య − 6ܥ డఎ(௫)డ௫ డమఎ(௫)డ௫మ ቁ ߣ2݅)݌ݔ݁ ଴ܶ) +ܰܵܶ + ܥܥ = 0                                                                                                                                                (73)  
ଵݒ଴ଶ̅ܦ  − ଵ′ᇱݒ7̅ܥ + ଵᇱᇱᇱᇱݒ̅ + ଵᇱݒ଴̅ܦ21ܥ ഥܷଵ + ଵᇱݒ଴̅ܦ22ܥ ഥܷଶ + ଵᇱᇱݒ31̅ܥ ഥܷଵଶ + ଵᇱᇱݒ32̅ܥ ഥܷଶଶ − ଵᇱᇱݒ31̅ܥܽ ഥܷଵଶ ଵᇱᇱݒ32̅ܥܽ− ഥܷଶଶ = ൬డ௒(்ଵ)    డ்ଵ ቀ21ܥ డఎ(௫)డ௫ ഥܷଵ + 22ܥ డఎ(௫)డ௫ ഥܷଶ + ቁ݅ߣ(ݔ)ߟ2 + 6ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത ቀడఎ(௫)డ௫ ቁଶ డఎ(௫)തതതതതതడ௫ +2ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത ቀడఎ(௫)డ௫ ቁଶ డరఎ(௫)തതതതതതడ௫ర + 4ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത డఎ(௫)డ௫ డఎ(௫)തതതതതതడ௫ డరఎ(௫)డ௫ర + 8ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത డఎ(௫)డ௫ డమఎ(௫)തതതതതതడ௫మ డయఎ(௫)డ௫య +8ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത డఎ(௫)തതതതതതడ௫ డమఎ(௫)డ௫మ డయఎ(௫)డ௫య − .6ܥ3 ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത డఎ(௫)డ௫ డఎ(௫)തതതതതതడ௫ డమఎ(௫)డ௫మ + 8ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത డఎ(௫)డ௫ డమఎ(௫)డ௫మ డయఎ(௫)തതതതതതడ௫య −ଷଶ .6ܥ ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത ቀడఎ(௫)డ௫ ቁଶ డమఎ(௫)డ௫మ ൰ ߣ݅)݌ݔ݁ ଴ܶ) + ቀ2ܺ(ܶ1)ܻ(ܶ1)തതതതതതതത డ஍(௫)డ௫ డరఎ(௫)തതതതതതడ௫ర +4ܺ(ܶ1)ܻ(ܶ1)തതതതതതതത డమ஍(௫)డ௫మ డయఎ(௫)തതതതതതడଷ ቁ ߱݅)݌ݔ݁ ଴ܶ) ߣ݅−)݌ݔ݁ ଴ܶ) − ቀ(1ܶ)ܻ(1ܶ)6ܺܥതതതതതതതത డ஍(௫)డ௫ డమఎ(௫)തതതതതതడ௫మ തതതതതതതത(1ܶ)ܻ(1ܶ)6ܺܥ+ డఎ(௫)തതതതതതడ௫ డమ஍(௫)డ௫మ ቁ ߱݅)݌ݔ݁ ଴ܶ) ߣ݅−)݌ݔ݁ ଴ܶ) + 3ܻ(ܶ1)ଶ డమఎ(௫)డ௫మ డయఎ(௫)డ௫య ߣ2݅)݌ݔ݁ ଴ܶ) + ܰܵܶ + ܥܥ = 0                                                                     (74) 

Where CC and NST denote complex conjugates and non-secular terms respectively 
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The next task is to determine the requirements for X(T1) and Y(T1) that permits the solutions of ݑതଵ and ̅ݒଵ to be independent of secular terms. However, examining equations (73) and (74), it can be observed 
that two scenarios exist ߱ ≠ ߱  and ߣ2 =   .ߣ2

2.2.2 When ࣓ is far from ૛ࣅ 

If ߱ is far from 2ߣ, then none of the coupled nonlinear terms will generate secular terms, therefore 
resulting to uncoupled response.  

The two equations (73) and (74) will have bounded solutions only if solvability condition holds. The 
solvability condition demands that the coefficient of ݁݌ݔ(݅߱ ଴ܶ) ߣ݅)݌ݔ݁ ݀݊ܽ  ଴ܶ). That is, X (T1) and Y 
(T1) should satisfy the following relation:  

− ቀC21 பଡ଼(୘ଵ)ப୘ଵ பథ(௫)ப୶ ഥܷଵ + C22 பଡ଼(୘ଵ)ப୘ଵ பథ(௫)ப୶ ഥܷଶ + 2i பଡ଼(୘ଵ)ப୘ଵ ωቁ(ݔ)߶ = 0                                                 (75)  
 ൬డ௒(்ଵ)    డ்ଵ ቀ21ܥ డఎ(௫)డ௫ ഥܷଵ + 22ܥ డఎ(௫)డ௫ ഥܷଶ + ቁ݅ߣ(ݔ)ߟ2 + 6ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത ቀడఎ(௫)డ௫ ቁଶ డఎ(௫)തതതതതതడ௫ +2ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത ቀడఎ(௫)డ௫ ቁଶ డరఎ(௫)തതതതതതడ௫ర + 4ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത డఎ(௫)డ௫ డఎ(௫)തതതതതതడ௫ డరఎ(௫)డ௫ర + 8ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത డఎ(௫)డ௫ డమఎ(௫)തതതതതതడ௫మ డయఎ(௫)డ௫య +8ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത డఎ(௫)തതതതതതడ௫ డమఎ(௫)డ௫మ డయఎ(௫)డ௫య − .6ܥ3 ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത డఎ(௫)డ௫ డఎ(௫)തതതതതതడ௫ డమఎ(௫)డ௫మ + 8ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത డఎ(௫)డ௫ డమఎ(௫)డ௫మ డయఎ(௫)തതതതതതడ௫య −ଷଶ .6ܥ ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത ቀడఎ(௫)డ௫ ቁଶ డమఎ(௫)തതതതതതడ௫మ ൰ = 0                                                                                                   (76)  

With the inner product defined for complex functions on [0, 1] as: 

〈݂, ݃〉 = න ݂݃̅ଵ
଴  (77)                                                                                                                                        ݔ݀

Equations (88) and (89) can be cast as: ߲ܺ(ܶ1)߲ܶ1 = 0                                                                                                                                                    (78) 

߲ܻ(ܶ1)߲ܶ1 + ܻܵ(ܶ1)ଶܻ(ܶ1)തതതതതതതത = 0                                                                                                                    (79) 

Where: ܵ = ׬ ൤଺ቀങആ(ೣ)ങೣ ቁమങആ(ೣ)തതതതതതതങೣ ାଶቀങആ(ೣ)ങೣ ቁమങరആ(ೣ)തതതതതതതങೣర ାସങആ(ೣ)ങೣ ങആ(ೣ)തതതതതതതങೣ ങరആ(ೣ)ങೣర ା଼ങആ(ೣ)ങೣ ങమആ(ೣ)തതതതതതതങೣమ ങయആ(ೣ)ങೣయ ൨ఎ(௫)തതതതതതభబ ௗ௫(஼ଶଵ௎ഥభା஼ଶଶ௎ഥమ) ׬ ങആ(ೣ)ങೣ ఎ(௫)തതതതതതభబ ௗ௫ାଶ௜ఒ ׬ ఎ(௫)ఎ(௫)തതതതതതభబ ௗ௫ +
׬ ൤଼ങആ(ೣ)തതതതതതതങೣ ങమആ(ೣ)ങೣమ ങయആ(ೣ)ങೣయ ିଷ஼଺ങആ(ೣ)ങೣ ങആ(ೣ)തതതതതതതങೣ ങమആ(ೣ)ങೣమ ା଼ങആ(ೣ)ങೣ ങమആ(ೣ)ങೣమ ങయആ(ೣ)തതതതതതതങೣయ ିయమ஼଺ቀങആ(ೣ)ങೣ ቁమങమആ(ೣ)തതതതതതതങೣమ ൨ఎ(௫)തതതതതതభబ ௗ௫(஼ଶଵ௎ഥభା஼ଶଶ௎ഥమ) ׬ ങആ(ೣ)ങೣ ఎ(௫)തതതതതതభబ ௗ௫ାଶ௜ఒ ׬ ఎ(௫)ఎ(௫)തതതതതതభబ ௗ௫  
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Solving equation (78) for X(T1), gives a constant amplitude solution up to the 1st order of approximation: ܺ(ܶ1) =  ଴                     (80)ݔߙ

To determine Y (T1), the solution of equation (79) is expressed in polar form as: 

ܻ(ܶ1) = 12 ௜ఉ௬(்ଵ)  ܽ݊݀  ܻ(ܶ1)തതതതതതതത݁(1ܶ)ݕߙ = 12  ௜ఉ௬(்ଵ)                                               (81)ି݁(1ܶ)ݕߙ

Where S is a complex numbers such that: ܵ = ܵோ + ݅ܵூ 

Substituting equations (81) into equations (79) and sorting the outcome into real and imaginary parts: 

Resolving for  ݕߚ ݀݊ܽ ݕߙ: 

Real Part: ݀1ܶ݀(1ܶ)ݕߙ = − ଷ4(1ܶ)ݕߙ(ܵ)ܴ݁                                                                                                             (82) 

(1ܶ)ݕߙ = ඨ (ܵ)଴ܴ݁ݕߙ)2 + ܴ݁(ܵ)ܶ1)                                                                                               (83) 

Imaginary Part: 

(1ܶ)ݕߙ 1ܶ݀(1ܶ)ݕߚ݀ = ଷ4(1ܶ)ݕߙ(ܵ)݉ܫ                                                                                                              (84) 

(1ܶ)ݕߚ = − ൤ (ܵ)2ܴ݁(ܵ)݉ܫ (݈݊|ܴ݁(ܵ)ܶ1 + ଴ܴ݁(ܵ)|)൨ݕߙ + ൤ݕߚ଴ − (ܵ)2ܴ݁(ܵ)݉ܫ ݈݊(2)  ൨                                      (85) 

Substituting equations (82) and (81) into equations (69) 

ܻ(ܶ1) = 1ඥ2(ܴ݁(ܵ)ܶ1 + (଴ܭ ݌ݔ݁ ቆ−݅ ൭ (ܵ)2ܴ݁(ܵ)݉ܫ (݈݊|ܴ݁(ܵ)ܶ1 + ଴|)൱ܭ +  ଵቇ                                      (86)ܭ

Where ܭ଴ and ܭଵ are constants expressed as:  ܭ଴ =  (ܵ)଴ܴ݁ݕߙ

ଵܭ = −݅ ൤ݕߚ଴ − (ܵ)2ܴ݁(ܵ)݉ܫ ݈݊(2)൨ 

 .଴ are arbitrary constants of integration representing the initial conditionsݕߚ ଴ andݕߙ 
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Substituting equations (86) and (80) into equations (71) and (72) respectively, the corresponding 
nonlinear frequencies can be expressed as: ߱௡௟ = ௡௟ߣ (87)          ߱ = ߣ + ߝ (ܵ)2ܴ݁(ܵ)݉ܫ ଴ଷݕߙ) + ଴ଶݕߙ4 +  ଴)                                                                                (88)ݕߙ6

Therefore, considering the n-th values of αx(T1), αy(T1), βx(T1) and βy(T1) corresponding to the n-th 
modal functions and the n-th natural frequencies, the n-th solution of uncoupled problem is expressed as: ݑത(ݔ, ௡(ݐ = ௡(ݔ)߶௡(1ܶ)ݔߙ (௡ܶ0߱)ݏ݋ܿ + ,ݔ)ݒ̅ (89)                                                                              (ߝ)ܱ ௡(ݐ = ௡(ݔ)ߟ௡(1ܶ)ݕߙ ௡ܶ0ߣ)ݏ݋ܿ + (௡(1ܶ)ݕߚ +  (90)                                                           (ߝ)ܱ

Substituting ܶ0 = , ݐ ܶ1 =   :the first order approximate solution is expressed as ,ݐߝ

,ݔ)തݑ (ݐ = ෍ |௡(ݔ)߶|௡ݔߙ ݐ௡߱)ݏ݋ܿ + (௡ݔ߮ + ஶ(ߝ)ܱ
୬ୀଵ                                                                         (91) 

,ݔ)ݒ̅ (ݐ = ෍ |௡(ݔ)ߟ|௡ݕߙ ݐ௡ߣ)ݏ݋ܿ + ௡(1ܶ)ݕߚ + (௡ݕ߮ + ஶ(ߝ)ܱ
୬ୀଵ                                                    (92) 

Where the phase angles ߮ݔ௡ ܽ݊݀ ߮ݕ௡ are given by: 
 tan(߮ݔ௡) = ௡ሽ(ݔ)߶௡ሽܴ݁ሼ(ݔ)߶ሼ݉ܫ ,  tan(߮ݕ௡) =     ௡ሽ(ݔ)ߟ௡ሽܴ݁ሼ(ݔ)ߟሼ݉ܫ
2.2.3 When ࣓ is close to ૛ࣅ 

However in order to examine the coupled nonlinear dynamics of the system, which is the scenario 
when  ߱ = ߱ .is introduced ߪ a detuning parameter ,ߣ2 = ߣ2 + 0ܶߣ2 (93)                                                                                                                                          ߪߝ = ߱ܶ0 − ߱) ݀݊ܽ 1ܶߪ − 0ܶ(ߣ = 0ܶߣ +  (94)                                                                    1ܶߪ

The two equations (73) and (74) will have bounded solutions only if solvability condition holds. The 
solvability condition demands that the coefficient of ݁݌ݔ(݅߱ ଴ܶ) ߣ݅)݌ݔ݁ ݀݊ܽ  ଴ܶ) vanishes. That is, X (T1) 
and Y (T1) should satisfy the following relation:  
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− ቀ21ܥ డ௑(்ଵ)డ்ଵ డథ(௫)డ௫ ഥܷଵ + 22ܥ డ௑(்ଵ)డ்ଵ డథ(௫)డ௫ ഥܷଶ + 2݅ డ௑(்ଵ)డ்ଵ ቁ߱(ݔ)߶ + ܻ(ܶ1)ଶ ቀడఎ(௫)డ௫ డరఎ(௫)డ௫ర + డమఎ(௫)డ௫మ డయఎ(௫)డ௫య 6ܥ− డఎ(௫)డ௫ డమఎ(௫)డ௫మ ቁ ߪ݅−)݌ݔ݁ ଵܶ) = 0                                                                           (95) 

൬డ௒(்ଵ)    డ்ଵ ቀ21ܥ డఎ(௫)డ௫ ഥܷଵ + 22ܥ డఎ(௫)డ௫ ഥܷଶ + ቁ݅ߣ(ݔ)ߟ2 + 6ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത ቀడఎ(௫)డ௫ ቁଶ డఎ(௫)തതതതതതడ௫ +2ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത ቀడఎ(௫)డ௫ ቁଶ డరఎ(௫)തതതതതതడ௫ర + 4ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത డఎ(௫)డ௫ డఎ(௫)തതതതതതడ௫ డరఎ(௫)డ௫ర + 8ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത డఎ(௫)డ௫ డమఎ(௫)തതതതതതడ௫మ డయఎ(௫)డ௫య +8ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത డఎ(௫)തതതതതതడ௫ డమఎ(௫)డ௫మ డయఎ(௫)డ௫య − .6ܥ3 ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത డఎ(௫)డ௫ డఎ(௫)തതതതതതడ௫ డమఎ(௫)డ௫మ + 8ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത డఎ(௫)డ௫ డమఎ(௫)డ௫మ డయఎ(௫)തതതതതതడ௫య −ଷଶ .6ܥ ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത ቀడఎ(௫)డ௫ ቁଶ డమఎ(௫)തതതതതതడ௫మ ൰ + ቀ2ܺ(ܶ1)ܻ(ܶ1)തതതതതതതത డ஍(௫)డ௫ డరఎ(௫)തതതതതതడ௫ర + 4ܺ(ܶ1)ܻ(ܶ1)തതതതതതതത డమ஍(௫)డ௫మ డయఎ(௫)തതതതതതడଷ ቁ ௡ߣ)൫݅݌ݔ݁ ଴ܶ ߪ+ ଵܶ)൯ − ቀ(1ܶ)ܻ(1ܶ)6ܺܥതതതതതതതത డ஍(௫)డ௫ డమఎ(௫)തതതതതതడ௫మ + തതതതതതതത(1ܶ)ܻ(1ܶ)6ܺܥ డఎ(௫)തതതതതതడ௫ డమ஍(௫)డ௫మ ቁ ௡ߣ)൫݅݌ݔ݁ ଴ܶ + ߪ ଵܶ)൯ +3ܻ(ܶ1)ଶ డమఎ(௫)డ௫మ డయఎ(௫)డ௫య ൫݅(߱௡݌ݔ݁ ଴ܶ − ߪ ଵܶ)൯ = 0                                                      (96) 

The equations can be cast as: 

− ߲ܺ(ܶ1)߲ܶ1 + 2ܬ ܻ(ܶ1)ଶ݁ߪ݅−)݌ݔ ଵܶ)  = 0                                                                          (97) 

డ௒(்ଵ)డ்ଵ + 3൫ܻ(ܶ1)ଶܻ(ܶ1)തതതതതതതത൯ܭ + 4൫ܺ(ܶ)ܻ(ܶ1)തതതതതതതതܭ exp(݅ߪ ଵܶ)൯ + ଶ(1ܶ)ܻ)5ܭ exp(−݅ߪ ଵܶ)) = 0        (98) 

Where: 

2ܬ = ׬ ൤ങആ(ೣ)ങೣ ങరആ(ೣ)ങೣర ାങమആ(ೣ)ങೣమ ങయആ(ೣ)ങೣయ ି஼଺ങആ(ೣ)ങೣ ങమആ(ೣ)ങೣమ ൨థ(௫)തതതതതതതௗ௫భబ ׬ ቂ(஼ଶଵ௎ഥభା஼ଶଶ௎ഥమ)೏ഝ(ೣ)೏ೣ ାଶ௜ఠ థ(௫)ቃథ(௫)തതതതതതതௗ௫భబ         
3ܭ = ׬ ൤଺ቀങആ(ೣ)ങೣ ቁమങആ(ೣ)തതതതതതതങೣ ାଶቀങആ(ೣ)ങೣ ቁమങరആ(ೣ)തതതതതതതങೣర ାସങആ(ೣ)ങೣ ങആ(ೣ)തതതതതതതങೣ ങరആ(ೣ)ങೣర ା଼ങആ(ೣ)ങೣ ങమആ(ೣ)തതതതതതതങೣమ ങయആ(ೣ)ങೣయ ൨ఎ(௫)തതതതതതభబ ௗ௫(஼ଶଵ௎ഥభା஼ଶଶ௎ഥమ) ׬ ങആ(ೣ)ങೣ ఎ(௫)തതതതതതభబ ௗ௫ାଶ௜ఒ ׬ ఎ(௫)ఎ(௫)തതതതതതభబ ௗ௫ +
׬ ൤଼ങആ(ೣ)തതതതതതതങೣ ങమആ(ೣ)ങೣమ ങయആ(ೣ)ങೣయ ିଷ஼଺ങആ(ೣ)ങೣ ങആ(ೣ)തതതതതതതങೣ ങమആ(ೣ)ങೣమ ା଼ങആ(ೣ)ങೣ ങమആ(ೣ)ങೣమ ങయആ(ೣ)തതതതതതതങೣయ ିయమ஼଺ቀങആ(ೣ)ങೣ ቁమങమആ(ೣ)തതതതതതതങೣమ ൨ఎ(௫)തതതതതതభబ ௗ௫(஼ଶଵ௎ഥభା஼ଶଶ௎ഥమ) ׬ ങആ(ೣ)ങೣ ఎ(௫)തതതതതതభబ ௗ௫ାଶ௜ఒ ׬ ఎ(௫)ఎ(௫)തതതതതതభబ ௗ௫   

4ܭ = ׬ ൤ଶങಅ(ೣ)ങೣ ങరആ(ೣ)തതതതതതതങೣర ାସങమಅ(ೣ)ങೣమ ങయആ(ೣ)തതതതതതതങయ ି஼଺ങಅ(ೣ)ങೣ ങమആ(ೣ)തതതതതതതങೣమ ି஼଺ങആ(ೣ)തതതതതതതങೣ ങమಅ(ೣ)ങೣమ ൨ఎ(௫)തതതതതതభబ ௗ௫(஼ଶଵ௎ഥభା஼ଶଶ௎ഥమ) ׬ ങആ(ೣ)ങೣ ఎ(௫)തതതതതതభబ ௗ௫ାଶ௜ఒ ׬ ఎ(௫)ఎ(௫)തതതതതതభబ ௗ௫    
5ܭ = ׬ ൤ଷങమആ(ೣ)ങೣమ ങయആ(ೣ)ങೣయ ൨ఎ(௫)തതതതതതభబ ௗ௫(஼ଶଵ௎ഥభା஼ଶଶ௎ഥమ) ׬ ങആ(ೣ)ങೣ ఎ(௫)തതതതതതభబ ௗ௫ାଶ௜ఒ ׬ ఎ(௫)ఎ(௫)തതതതതതభబ ௗ௫  

To determine X(T1) and Y(T1), the solution of equations (97) and (98) is expressed in polar form: 

ܻ(ܶ1) = 12 ௜ఉ௬(்ଵ)  ܽ݊݀  ܻ(ܶ1)തതതതതതതത݁(1ܶ)ݕߙ = 12  ௜ఉ௬(்ଵ)                                       (99)ି݁(1ܶ)ݕߙ

ܺ(ܶ1) = 12 ௜ఉ௫(்ଵ)  ܽ݊݀  ܻ(ܶ1)തതതതതതതത݁(1ܶ)ݔߙ = 12  ௜ఉ௫(்ଵ)                                       (100)ି݁(1ܶ)ݔߙ
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Substituting into the solvability condition and separating real and imaginary parts. The following set of 
modulation equation is formed: 

0 = ௃ଶோఈ௬(்ଵ)మଶ cos(߰1) − ௗఈ௫(்ଵ)ௗ்ଵ − ௃ଶூఈ௬(்ଵ)మଶ sin(߰1)  0 = ௗఈ௬(்ଵ)ௗ்ଵ + ௄ଷோఈ௬(்ଵ)యସ − ௄ହோఈ௬(்ଵ)మଶ cos(߰2) − ௄ହூఈ௬(்ଵ)మଶ sin(߰2) − ௄ସோఈ௬(்ଵ)ఈ௫(்ଵ)ଶ cos(߰1) − ௄ସூఈ௬(்ଵ)ఈ௫(்ଵ)ଶ sin(߰1)                                                                                                                                                                                                                      (111) 0 = ௃ଶோఈ௬(்ଵ)మଶ sin(߰1) − (1ܶ)ݔߙ ௗఉ௫(்ଵ)ௗ்ଵ + ௃ଶூఈ௬(்ଵ)మଶ cos(߰1)  0 = (1ܶ)ݕߙ ௗఉ௫(்ଵ)ௗ்ଵ + ௄ହோఈ௬(்ଵ)మଶ sin(߰2) + ௄ଷூఈ௬(்ଵ)యସ − ௄ହூఈ௬(்ଵ)మଶ cos(߰2) − ௄ସூఈ௬(்ଵ)ఈ௫(்ଵ)ଶ cos(߰1) + ௄ସோఈ௬(்ଵ)ఈ௫(்ଵ)ଶ sin(߰1)   
Where:  ߰1 = (1ܶ)ݔߚ − (1ܶ)ݕߚ2 + and  ߰2 1ܶߪ = (1ܶ)ݕߚ − ,2ܴܬ 1ܶߪ ,3ܴܭ ,4ܴܭ ,2ܬ ݂݋ ݐݎܽ݌  ݈ܽ݁ݎ ℎ݁ݐ ݁ݎܽ 5ܴܭ ݀݊ܽ ,3ܭ ,ܫ2ܬ 5ܭ݀݊ܽ 4ܭ ,ܫ3ܭ ,ܫ4ܭ ,2ܬ݂݋ ݐݎܽ݌  ݈ܽ݁ݎ ℎ݁ݐ ݁ݎܽ 5ܴܭ ݀݊ܽ ,3ܭ  5ܭ݀݊ܽ 4ܭ

Seeking for stationary solutions, (ݔ)ߙᇱ = ᇱ(ݕ)ߙ = ߰1ᇱ = ߰2ᇱ = 0 in modulation equations (112); 

0 = ௃ଶோఈ௬(்ଵ)మଶ cos(߰1) − ௃ଶூఈ௬(்ଵ)మଶ sin(߰1)             
0 = ௄ଷோఈ௬(்ଵ)యସ − ௄ହோఈ௬(்ଵ)మଶ cos(߰2) − ௄ହூఈ௬(்ଵ)మଶ sin(߰2) − ௄ସோఈ௬(்ଵ)ఈ௫(்ଵ)ଶ cos(߰1) − ௄ସூఈ௬(்ଵ)ఈ௫(்ଵ)ଶ sin(߰1)    
0 = ௃ଶோఈ௬(்ଵ)మଶ sin(߰1) − ߪ(1ܶ)ݔߙ + ௃ଶூఈ௬(்ଵ)మଶ cos(߰1)                                                                                                      (113)  
0 = ߪ(1ܶ)ݕߙ + ௄ହோఈ௬(்ଵ)మଶ sin(߰2) + ௄ଷூఈ௬(்ଵ)యସ − ௄ହூఈ௬(்ଵ)మଶ cos(߰2) − ௄ସூఈ௬(்ଵ)ఈ௫(்ଵ)ଶ cos(߰1) + ௄ସோఈ௬(்ଵ)ఈ௫(்ଵ)ଶ sin(߰1)   
The linear solutions can be obtained by setting the coefficient of the nonlinear terms to zero. Therefore, (1ܶ)ݔߙ = (1ܶ)ݕߙ = 0                                                                                             (114) 

The nonlinear solutions can be obtained by solving for (1ܶ)ݕߙ ݀݊ܽ (1ܶ)ݔߙ completely. 

With the notations: ܵܥ = ݏ݋ܿ  (߰1) , ܵܵ = .ܣ :can be obtained by resolving the quartic frequency amplitude relation (1ܶ)ݔߙ   (1߰) ݊݅ݏ ସ(1ܶ)ݕߙ + .ܤ ଶ(1ܶ)ݕߙ + ܥ = 0                                                                               (115) 

Where: ܣ = ଶK3Iଶߪ   + ଶK3Rଶߪ  + CSଶJ2IଶK4Iଶ + CSଶJ2IଶK4Rଶ + CSଶJ2RଶK4Iଶ + CSଶJ2RଶK4Rଶ + J2IଶK4IଶSSଶ +J2IଶK4RଶSSଶ + J2RଶK4IଶSSଶ + J2RଶK4RଶSSଶ − 2CS. .ߪ K3I. K4IඥJ2Iଶ + J2Rଶ − 2CS. .ߪ K3R. K4RඥJ2Iଶ + J2Rଶ .ߪ 2+ K3I. K4R. SSඥJ2Iଶ + J2Rଶ − .ߪ 2 K4I. K3R. SSඥJ2Iଶ + J2Rଶ  ܤ = −ቂ4 ߪଶK5Iଶ + ଶK5Rଶߪ 4 − ଷK3Iߪ 8 + 8CS. .ଶߪ  K4IඥJ2Iଶ + J2Rଶ − .ଶߪ  8 K4R. SS. σඥJ2Iଶ + J2Rଶቃ  ܥ =   ସߪ 16
The solution of the quartic equation (115) will produce four roots of αy(T1): 

(1ܶ)ݕߙ = ±ට− ൫஻ି√஻మିସ஺஼൯ଶ஺ (1ܶ)ݕߙ         ݎ݋       = ±ට− ൫஻ା√஻మିସ஺஼൯ଶ஺            (116)  
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However, the acceptable solution for αy(T1) is the root of the quartic equation (115) that is real and 
positive [25-27]. The expression for estimating αݔ(T1) is defined in terms of αy(T1) as: 

(1ܶ)ݔߙ = ଵ ఙ ቈටቀ௃ଶோఈ௬(்ଵ)మଶ ቁଶ + ቀ௃ଶூఈ௬(்ଵ)మଶ ቁଶ቉                                              (117) 

Considering the n-th values of αx(T1), αy(T1), βx(T1) and βy(T1) corresponding to the n-th modal 
functions and the n-th natural frequencies, the n-th solution of coupled problem is expressed as: ݑത(ݔ, ௡(ݐ = ௡(ݔ)߶௡(1ܶ)ݔߙ ௡ܶ0߱)ݏ݋ܿ + (௡(1ܶ)ݔߚ + ,ݔ)ݒ̅ (118)                                                        (ߝ)ܱ ௡(ݐ = ௡(ݔ)ߟ௡(1ܶ)ݕߙ ௡ܶ0ߣ)ݏ݋ܿ + (௡(1ܶ)ݕߚ +  (119)                                                           (ߝ)ܱ
 
Substituting: ܶ0 = , ݐ ܶ1 = ,ݐߝ ௡(1ܶ)ݔߙ = ,௡ݔߙ ௡(1ܶ)ݕߙ  = ,௡ݕߙ ௡(1ܶ)ݔߚ = ߰1௡ + ௡(1ܶ)ݕߚ2 ,௡ܶ1ߪ− ௡(1ܶ)ݕߚ = ߰2௡ + ௡ܶ1ߪ ݀݊ܽ ௡ܶ1ߪ = ߱௡ܶ0 −   ௡ܶ0ߣ2
 
The first order approximate solution is expressed as:  ݑത(ݔ, (ݐ = ෍ |௡(ݔ)߶|௡ݔߙ 1௡߰)ݏ݋ܿ + 2߰2௡ + ௡߱ݐ2 − ௡ߣݐ2 + (௡ݔ߮ + ஶ(ߝ)ܱ

୬ୀଵ                     (120) 

,ݔ)ݒ̅  (ݐ = ෍ |௡(ݔ)ߟ|௡ݕߙ 2௡߰)ݏ݋ܿ + ௡߱ݐ − ௡ߣݐ + (௡ݕ߮ + ஶ(ߝ)ܱ
୬ୀଵ                                             (121) 

 
Where the phase angles ߮ݔ௡ ܽ݊݀ ߮ݕ௡ are given by: 
 tan(߮ݔ௡) = ௡ሽ(ݔ)߶௡ሽܴ݁ሼ(ݔ)߶ሼ݉ܫ ,  tan(߮ݕ௡) =     ௡ሽ(ݔ)ߟ௡ሽܴ݁ሼ(ݔ)ߟሼ݉ܫ
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3 Numerical Results  
This section presents the numerical solutions of the nonlinear dynamics of a cantilever pipe conveying 
steady pressurized air/water two-phase flow. The axial linear natural frequencies for different flow 
velocities are estimated analytically from equation (61) while the transverse linear natural frequencies are 
estimated by solving equations (64) and (65) simultaneously with a numeric code written in Matlab.  

Table 1: Summary of pipe and flow parameter 
Parameter Name Parameter Unit Parameter Values 

External Diameter Do (m) 0.0113772 
Internal Diameter Di (m) 0.00925 
Length L (m) 0.1467 

Pipe density ρpipe (kg/m3) 7800 

Gas density ρGas (kg/m3) 1.225 

Water density ρWater (kg/m3) 1000 
Tensile and compressive stiffness EA (N) 7.24E+06 
Bending stiffness EI (N) 1.56E+03 

Considering a simple system with β=0.2 and Π1=100, Π0= Π2=0, a=αΔT=0 for a single phase flow 
through the pipe, the natural frequency Argand diagram plot for the axial and transverse vibrations are 
presented in Figure 2 and Figure 3. 

 

 

 

 

 

 

 

 

 Figure 2: First four modes axial dimensionless complex frequency as a function of dimensionless 
single phase flow velocity  
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Figure 3: First four modes transverse dimensionless complex frequency as a function of 

dimensionless single phase flow velocity  

The Argand diagram of the axial vibrations shows that as the fluid velocity tends towards the critical 
velocity; all the paths move towards the origin of the Argand diagram, while it can be seen for the 
transverse vibration that as the velocity attains higher values, the ݉ܫ(߱) in the second mode of the system 
starts to diminish and in time becomes negative; Therefore, a Hopf bifurcation occurs at an approximate 
dimensionless velocity of 5.65 which is the critical velocity at which the systems becomes transversely 
unstable.  

Table 2: Summary of the linear single phase solution’s critical flow velocity 
Fluid Void  

Fraction 
 ࢼ

 Liquid 
  ࢼ

Gas 
  ࢸ

Liquid 
  ࢸ

Gas 
 Critical velocity 

Transverse Axial 
Single Phase NA 0.2 0.0 1.0 0.0  5.653 14.149 

The nonlinear behaviour of the pipe will be examined for both scenarios when there is coupling of the 
axial and transverse vibration and when both are uncoupled. The uncoupled nonlinear transverse 
frequency presented in Eq. (88) demonstrates a cubic nonlinear dependence of the uncoupled transverse 
frequencies on amplitude. The quartic expression presented in Eq. (115) relates the frequency detuning 
parameter for the coupled axial and transverse vibration with the amplitude. These expressions will be 
used to plot the frequency response curves for both the uncoupled and coupled scenarios and the 
nonlinear behaviour of the pipe as it conveys two-phase flow at a supercritical mixture velocity “flow 
velocity larger than the critical velocity” 

3.1 Effects of two-phase flow on the dynamic behaviour of the pipe 

The effect of two-phase flow is studied by considering the nonlinear response of the cantilever pipe as the 
void fraction of the two-phase flow changes. Similar to the single phase flow, the Argand diagram of the 
eigen-frequencies, , is used to find the critical velocities of the two-phase flow for the various void 
fractions (0.3, 0.4 and 0.5), with the corresponding slip ratios estimated from the Chisholm empirical 
relations presented in equations (32) to (36).  
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Table 3: Summary of the linear two-phase solution of critical flow velocities 
Fluid Void  

Fraction 
 ࢼ

 Liquid 
  ࢼ

Gas 
  ࢸ

Liquid 
  ࢸ

Gas 
 Critical mixture 

velocity 
Transverse Axial 

Two-phase 0.3 0.19998 0.00010 0.99948 0.00052 12.505  31.634  
Two-phase 0.4 0.19997 0.00016 0.99918 0.00082 13.349  33.750  
Two-phase 0.5 0.19995 0.00024 0.99878 0.00122 14.613   36.966 

* Critical mixture velocity based on Hopf bifurcation of 2nd mode  

Considering a supercritical mixture velocity of 15 and book keeping parameter (ε) of 0.1, the nonlinear 
frequency amplitude variations and coupled frequency response of the second mode, which is the stability 
determining mode in the linear sense, is plotted for various void fractions. 

 

 

 

 

 

  

 

Figure 4: Nonlinear frequency –amplitude variations for various void fractions 

 

 

 

 

 

 

 

 
 
 

Figure 5: Nonlinear frequency response for various void fractions 
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It can be seen in Figure 4 that as the void fraction increases, the natural frequency reduces. A hardening 
nonlinear behaviour is observed in the dynamic response of the pipe for all the examined void fractions. 
As seen in Figure 5, as the detuning parameter is increasing, bifurcation is observed for the various void 
fractions examined. Also, it can be observed that the amplitude of the coupled transverse vibration is 
reducing as the void fraction increases. 

3.1.1 Effects of temperature difference on the dynamic behaviour 

The effect of temperature differences on a cantilever pipe conveying two-phase flow is studied by 
considering the nonlinear response of the cantilever pipe as the temperature differences of the two-phase 
flow with void fraction of 0.3 changes. Similar to the single phase flow, the Argand diagram of the eigen-
frequencies, , is used to find the critical velocities of the two-phase flow for the various temperature 
differences (0, 40 and 50), with the corresponding slip ratios estimated from the Chisholm empirical 
relations presented in equations (32) to (36).  

Table 4: Summary of the linear two-phase solution of critical flow velocities for varying 
temperature difference 

Parameter Void  
Fraction 

Thermal expansivity ࢻ  
Critical mixture velocity 

Transverse*  Axial 
DT=0 0.3 0.002 12.505  31.634  

DT=40 0.3 0.002 9.253 31.634 
DT=50 0.3 0.002 8.237     31.634 

* Critical mixture velocity based on Hopf bifurcation of 2nd mode  

Considering a supercritical mixture velocity of 15 and book keeping parameter (ε) of 0.1, the nonlinear 
frequency amplitude variations and coupled frequency response of the second mode, which is the stability 
determining mode in the linear sense, is plotted for various temperature differences. 

 

 

 

 

 

 

 

 

Figure 6: Nonlinear frequency –amplitude variations for various temperature differences 
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Figure 7: Nonlinear frequency response for various temperature differences 

It can be seen in Figure 6 that as the temperature difference increases, the natural frequency increases. A 
hardening nonlinear behaviour is observed in the dynamic response of the pipe for all the examined 
temperature differences. As seen in Figure 7, as the detuning parameter is increasing, bifurcation is 
observed for the various temperature difference examined. Also, it can be observed that the increase in 
temperature difference did not create significant changes in amplitude of the coupled transverse vibration. 

3.1.2 Effects of flow pressure on the dynamic behaviour 

The effect of pressurization on a cantilever pipe conveying two-phase flow is studied by considering the 
nonlinear response of the cantilever pipe as the pressurization of the two-phase flow with void fraction of 
0.3 changes. Similar to the single phase flow, the Argand diagram of the eigen-frequencies, , is used to 
find the critical velocities of the two-phase flow for the various pressures (0, 5 and 10), with the 
corresponding slip ratios estimated from the Chisholm empirical relations presented in equations (32) to 
(36).  

Table 5: Summary of the linear two-phase solution of critical flow velocities for varying 
pressurization 

Parameter Void  
Fraction 

Critical mixture velocity 

Transverse * Axial મ૛ = ૙ 0.3 12.505  31.634  મ૛ = ૞ 0.3 10.596 31.634 મ૛ = ૚૙ 0.3 8.237         31.634 
* Critical mixture velocity based on Hopf bifurcation of 2nd mode  
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Considering a supercritical mixture velocity of 15 and book keeping parameter (ε) of 0.1, the nonlinear 
frequency amplitude variations and coupled frequency response of the second mode which is the stability 
determining mode in the linear sense, is plotted for various pressures. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 8: Nonlinear frequency –amplitude variations for various pressures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: Nonlinear frequency response for various pressures 

It can be seen in Figure 8 that as the pressure increases, the natural frequency increases. A hardening 
nonlinear behaviour is observed in the dynamic response of the pipe for all the examined pressures. As 
seen in Figure 9, as the detuning parameter is increasing, bifurcation is observed for the various pressures 
examined. Also, it can be observed that the increasing the pressure did not create significant changes in 
amplitude of the coupled transverse vibration. 
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3.1.3 Effects of top tension on the dynamic behaviour 

The effect of top tension on a cantilever pipe conveying two-phase flow is studied by considering the 
nonlinear response of the cantilever pipe for a situation with no top tension, tensioning value of 5 and 
compressing value of 5, with a two-phase flow of void fraction of 0.3. Similar to the single phase flow, 
the Argand diagram of the eigen-frequencies, , is used to find the critical velocities of the two-phase flow 
for the various tensioning values, the corresponding slip ratios are estimated from the Chisholm empirical 
relations presented in equations (32) to (36).  

Table 6: Summary of the linear two-phase solution of critical flow velocities for varying top 
tensions 

Parameter Void  
Fraction 

 Critical velocity 

Transverse*  Axial મ૙ = ૙ 0.3 12.505  31.634  મ૙ = ૞ 0.3 14.155 31.634 મ૙ = −૞ 0.3 10.596         31.634 
* Critical mixture velocity based on Hopf bifurcation of 2nd mode  

Considering a supercritical mixture velocity of 15 and book keeping parameter (ε) of 0.1, the nonlinear 
frequency amplitude variations and coupled frequency response of the second mode which is the stability 
determining mode in the linear sense, is plotted for the top tensions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Nonlinear frequency –amplitude variations for various top tensions 
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Figure 11: Nonlinear frequency response for various top tensions 

It can be seen in Figure 10 that the tensioning top load reduces the natural frequency increases while a 
compressing top load increases the natural frequency. A hardening nonlinear behaviour is observed in the 
dynamic response of the pipe for all the examined cases. As seen in Figure 11, as the detuning parameter 
is increasing, bifurcation is observed for the various pressures examined. Also, it can be observed that the 
top tensions did not create significant changes in amplitude of the coupled transverse vibration. 

3.2 Time History and Phase Plots  
Equations (91), (92), (120), and (121) are the first order approximate solutions of the transverse and axial 
displacement of the uncoupled and coupled vibration of the pipe. The time trace/history and phase plots 
of the 2nd mode of the uncoupled and coupled vibrations are studied for various void fractions (0.3, 0.4 
and 0.5) considering a post critical flow mixture velocity of 15 and presented in Figures 12 to 23.  

The uncoupled response of the transverse vibrations as shown in Figures 12, 16 and 20 for the various 
void fractions looks similar, they all shows that the uncoupled transverse vibrations exhibits an oscillation 
that converges to a limit cycle with time. With initial amplitudes greater that the amplitudes of the limit 
cycles; hence, a positive initial damping is observed and the amplitudes decays until it attains the limit 
cycles as shown in the phase plot with a set of concentric circles inside the phase trajectories. Contrary to 
this, the uncoupled axial vibration as shown in Figures, 13, 17 and 21 is observed to exhibit uniform 
periodic oscillations, which traces out as a closed orbit in the phase plots.  The amplitudes of the 
displacements are observed to reduce as the void fraction is increasing. 

As a result of the coupling between the axial and the transverse vibration, both the coupled transverse and 
axial solutions as shown in Figures 14, 15, 18, 19, 22 and 23, exhibits uniform periodic oscillations, 
which trace out as a closed orbit in the phase plots. The amplitudes of the coupled displacements are 
observed to reduce as the void fraction is increasing. 
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Figure 12: Time history and phase plots of uncoupled transverse vibrations of the tip of a cantilever 
pipe conveying two-phase flow of void fraction of 0.3  

 

 

 

 

 

 

 

Figure 13: Time history and phase plots of uncoupled axial vibrations of the tip of a cantilever pipe 
conveying two-phase flow of void fraction of 0.3 
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Figure 14: Time history and phase plots of coupled transverse vibrations of the tip of a cantilever 
pipe conveying two-phase flow of void fraction of 0.3, σ of 2.0 

 

 

 

 

 

 

 

 

 

Figure 15: Time history and phase plots of coupled axial vibrations of the tip of a cantilever pipe 
conveying two-phase flow of void fraction of 0.3, σ of 2.0 
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Figure 16: Time history and phase plots of uncoupled transverse vibrations of the tip of a cantilever 
pipe conveying two-phase flow of void fraction of 0.4 

 

 

 

 

 

 

 

 

 

 

Figure 17: Time history and phase plots of uncoupled axial vibrations of the tip of a cantilever pipe 
conveying two-phase flow of void fraction of 0.4 
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Figure 18: Time history and phase plots of coupled transverse vibrations of the tip of a cantilever 
pipe conveying two-phase flow of void fraction of 0.4, σ of 2.0 

 

 

 

 

 

 

 

 

 

 

Figure 19: Time history and phase plots of coupled axial vibrations of the tip of a cantilever pipe 
conveying two-phase flow of void fraction of 0.4, σ of 2.0 
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Figure 20: Time history and phase plots of uncoupled transverse vibrations of the tip of a cantilever 
pipe conveying two-phase flow of void fraction of 0.5 

 

 

 

 

 

 

 

 

 

 

Figure 21: Time history and phase plots of uncoupled axial vibrations of the tip of a cantilever pipe 
conveying two-phase flow of void fraction of 0.5 
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Figure 22: Time history and phase plots of coupled transverse vibrations of the tip of a cantilever 
pipe conveying two-phase flow of void fraction of 0.5, σ of 2.0 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Time history and phase plots of uncoupled axial vibrations of the tip of a cantilever pipe 
conveying two-phase flow of void fraction of 0.5, σ of 2.0 
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4 Conclusion 
This study examines the dynamic behaviour of a cantilever pipe conveying two-phase flow. Taking into 
consideration the extensible theory, nonlinear equations of motion and boundary conditions were obtained 
using Hamilton’s principle. The equations were made to be non-dimensional so as to remove the 
dependence on geometric and dimensional parameters. Using the method multiple scale perturbation 
technique, natural frequencies, mode shapes and first order approximate solutions of the steady state 
response of the pipes were obtained. From the analytical assessment, it was observed that a 1:2 coupling 
exist between the axial and the transverse vibration of the pipe. 

The critical flow mixture velocity for various void fractions were obtained from the Argand diagram plot 
of the eigen-frequencies, it was observed that the critical velocities increases as the void fraction 
increases. The investigation of the uncoupled nonlinear dynamic behaviour of the pipe as it conveys two-
phase flow at a super critical mixture velocity reveals that the system exhibits a nonlinear hardening 
behaviour. As a result of the dynamic analysis, it has been observed that for a two-phase flow, increase in 
the void fractions reduces the natural frequency and the coupled amplitude of the system. Also, increase 
in temperature difference, increase in pressure and the presence of top tension were observed to increase 
the natural frequencies without a significant alteration in the coupled amplitude of the system while 
compression load at the top was observed to reduce the natural frequencies which out a significant change 
in the coupled amplitude of the system.   

APPENDIX  

Techniques for completely solving for (1ܶ)ݕߙ ݀݊ܽ (1ܶ)ݔߙ 

Using Trigonometry identities,  ܴ ߰)݊݅ݏ + (ߠ = (߰)݊݅ݏ(ߠ)ݏ݋ܴܿ + ܴ (߰)ݏ݋ܿ(ߠ)݊݅ݏܴ ߰)ݏ݋ܿ + (ߠ = (߰)ݏ݋ܿ(ߠ)ݏ݋ܴܿ − ܴ (߰)݊݅ݏ(ߠ)݊݅ݏܴ ߰)݊݅ݏ − (ߠ = (߰)݊݅ݏ(ߠ)ݏ݋ܴܿ − ܴ (߰)ݏ݋ܿ(ߠ)݊݅ݏܴ ߰)ݏ݋ܿ − (ߠ = (߰)ݏ݋ܿ(ߠ)ݏ݋ܴܿ +  (1ܣ)                                        (߰)݊݅ݏ(ߠ)݊݅ݏܴ
 
Equation (113a) and (113c) can be rewritten as: 
 0 = ܴ1 sin(߰1 + ߪ(1ܶ)ݔߙ (2ܣ)                                                                                                (1ߠ = ܴ1 cos(߰1 +  (3ܣ)                                                                                 (1ߠ

tan(1ߠ) = ௃ଶூ௃ଶோ , ܴ1 = ටቀ௃ଶோఈ௬(்ଵ)మଶ ቁଶ + ቀ௃ଶூఈ௬(்ଵ)మଶ ቁଶ   (4ܣ)                                     

From; (sin(߰1 + ଶ((1ߠ + (cos(߰1 + ଶ((1ߠ =  (5ܣ)                                                           1

(1ܶ)ݔߙ = ±ටோଵమఙమ   (6ܣ)                                                                                                       
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From equation (A2) or (A4); ߰1 = గଶ +   (7ܣ)                                                                                                                1ߠ

Equation (113b) and (113d) can be rewritten as: 
 ௄ଷூఈ௬(்ଵ)యସ + ߪ(1ܶ)ݕߙ − ௄ସூఈ௫(்ଵ)ఈ୷(୘ଵ)ୡ୭ୱ(టଵ)ଶ + ௄ସோఈ௫(்ଵ)ఈ୷(୘ଵ)ୱ୧୬(టଵ)ଶ = ܴ2 sin(߰2 −   (8ܣ)                     (2ߠ

௄ଷோఈ௬(்ଵ)యସ − ௄ସோఈ௫(்ଵ)ఈ୷(୘ଵ)ୡ୭ୱ(టଵ)ଶ − ௄ସூఈ௫(்ଵ)ఈ୷(୘ଵ)ୱ୧୬(టଵ)ଶ = ܴ2 cos(߰2 −   (9ܣ)                                      (2ߠ

tan(2ߠ) = ௄ହூ௄ହோ , ܴ2 = ටቀ௄ହூఈ௬(்ଵ)మଶ ቁଶ + ቀ௄ହோఈ௬(்ଵ)మଶ ቁଶ   (10ܣ)                                                              

From equation (A8) and (A9) 

߰2 = 2ߠ − tanିଵ ቈ(1ܶ)ݕߙܫ3ܭଶ − cos(߰1)(1ܶ)ݔߙܫ4ܭ2 + sin(߰1)(1ܶ)ݔߙ4ܴܭ2 + ଶ(1ܶ)ݕߙ3ܴܭ−ߪ4 + cos(߰1)(1ܶ)ݔߙ4ܴܭ2 + sin(߰1)(1ܶ)ݔߙܫ4ܭ2 ቉  (11ܣ) 

Let  

(1ܶ)ݔߙ = ߪ 1ܴ , ܵܥ = ݏ݋ܿ  (߰1) , ܵܵ =  (12ܣ)                                          (1߰) ݊݅ݏ

From; (sin(߰2 − ଶ((2ߠ + (cos(߰2 − ଶ((2ߠ =  (13ܣ)                                                                   1

Substituting the expressions of R1 and R2 from equations (A4) and (A10) respectively, a quartic equation 
in terms of (1ܶ)ݕߙ is obtained as: ܣ. ସ(1ܶ)ݕߙ + .ܤ ଶ(1ܶ)ݕߙ + ܥ =  (14ܣ)                                                                               0

Where: ܣ = ଶK3Iଶߪ   + ଶK3Rଶߪ  + CSଶJ2IଶK4Iଶ + CSଶJ2IଶK4Rଶ + CSଶJ2RଶK4Iଶ + CSଶJ2RଶK4Rଶ + J2IଶK4IଶSSଶ +J2IଶK4RଶSSଶ + J2RଶK4IଶSSଶ + J2RଶK4RଶSSଶ − 2CS. .ߪ K3I. K4IඥJ2Iଶ + J2Rଶ − 2CS. .ߪ K3R. K4RඥJ2Iଶ + J2Rଶ .ߪ 2+ K3I. K4R. SSඥJ2Iଶ + J2Rଶ − .ߪ 2 K4I. K3R. SSඥJ2Iଶ + J2Rଶ  ܤ = −ቂ4 ߪଶK5Iଶ + ଶK5Rଶߪ 4 − ଷK3Iߪ 8 + 8CS. .ଶߪ  K4IඥJ2Iଶ + J2Rଶ − .ଶߪ  8 K4R. SS. σඥJ2Iଶ + J2Rଶቃ  ܥ =   ସߪ 16
The solution of the quartic equation (A14) will produce four roots of αy(T1): 
 

(1ܶ)ݕߙ = ±ඨ− ൫ܤ − ଶܤ√ − ܣ൯2ܥܣ4 (1ܶ)ݕߙ         ݎ݋       = ±ඨ− ൫ܤ + ଶܤ√ − ܣ൯2ܥܣ4            (131) 

However, the acceptable solution for αy(T1) is the root of the quartic equation (115) that is real and 
positive [25-27].  
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