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Abstract

This paper studied the nonlinear vibrations of top tensioned cantilevered pipes conveying pressurized
steady two-phase flow under thermal loading. The coupled axial and transverse governing partial
differential equations of motion of the system were derived based on Hamilton’s mechanics with the
centreline assumed to be extensible. Multiple scale perturbation method was used to resolve the
governing equations, which resulted to an analytical approach for assessing the natural frequency, mode
shape and the nonlinear coupled axial and transverse steady state response of the pipe. The analytical
assessment reveals that at some frequencies the system is uncoupled, while at some frequencies a 1:2
coupling exists between the axial and the transverse frequencies of the pipe. Nonlinear frequencies versus
the amplitude displacement of the cantilever pipe conveying two-phase flow at super critical mixture
velocity for the uncoupled scenario exhibit a nonlinear hardening behaviour, an increment in the void
fractions of the two-phase flow resulted to a reduction in the pipe’s transverse vibration frequencies and
the coupled amplitude of the system. However, increasing the temperature difference, pressure and the
presence of top tension were observed to increase the pipe’s transverse vibration frequencies without a
significant change in the coupled amplitude of the system.
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1. Introduction

Two-phase flow is a common flow phenomenon in various industrial pipes; in nuclear heat exchangers,
pipes in process plants, thermal plants, subsea oil and gas explorations and many more. However, in spite
of the vast occurrences of two-phase flow in pipes, most of the existing publications on the flow induced
vibrations of pipes conveying fluids focused on the fluidelastic instability of pipes conveying single phase
flow. Miwa et al. [1] did an in-depth review of the extent of existing work on two-phase flow induced
vibrations, stating that there exist very few researches on the instability behaviour of pipes due to internal
two-phase flow. In the review, it was explained that internal two-phase flow induced vibration can be
initiated by various hydrodynamic phenomena, depending on the geometrical configurations of the flow
channels and operating conditions, gas-liquid two-phase flow may create vibrations with various modes
of amplitude and frequency. Monette and Pettigrew [2] presents an excellent experimental work on the
fluidelastic instability of flexible tubes subjected to two-phase flow which might be one of the premier
paper on the dynamics of pipe and also reveals the relationship between the void fraction and the linear
dynamics of the pipe for a two-phase liquid-gas flow. The early studies on the nonlinear dynamics of
cantilevered pipes conveying single phase flow either studied only the transverse displacement of the pipe
or considered the longitudinal displacement using the inextensible centerline assumptions [3-5]. However,
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the pioneering work by Ghayesh et al. [6] studied the nonlinear dynamics of cantilevered extensible pipe
conveying fluid, with equations of motions of the coupled transverse and longitudinal displacements
derived using the Lagrange equations for system containing non material volumes and highlighted that
conversely to inextensible pipe, an extensible pipe elongates in the axial direction as the flow velocity
increases.

Luczko et al. [7] highlighted that the dynamic behaviour of continuous systems, such as beams, moving
tapes or pipes with the flowing fluid is governed by non-linear partial differential equations with
appropriate boundary and initial conditions. As highlighted by Paidoussis [8], the nonlinear problems of
pipe conveying fluids cannot be resolved analytically, but recourse need to be taken to adopt specialized
analytical method like perturbation techniques, numerical time difference methods or a combined
analytical-numerical method. Some publications have adopted the direct Lagrangian discretization
method (Galerkin method) to convert the partial differential equations (PDEs) to ordinary differential
equations (ODE) and then resolve the resulting ODE’s using numerical techniques, Modarres and
Paidoussis [9], Wang et al. [10], Sinir [11], Ritto ef al. [12], Chen et al. [13]. The usage of analytical
methods like perturbation techniques is highly common with researchers working on nonlinear problems
Nayfeh [14], Nayfeh [15], Kesimli et al [16], Oz and Boyaci [17] where the solution were sought for by
an asymptotic expansion or by perturbing the original set of equations in terms of a small parameter
which is either present in the equation or introduced artificially. Some researchers working on the
fluidelastic instability of pipes conveying fluids have adopted this technique to resolve the nonlinear
dynamics of the pipes, some of these are the works of Enz [18] on the simple supported straight pipe
using perturbation analysis with multiple time-scaled method and comparison with measurements made
by Coriolis flowmeters, the study on the transverse vibrations of tension pipes conveying fluid with time
dependent velocity using the multiple scale perturbation technique by Oz and Pakdemirli. [19], the study
on the analysis of nonlinear vibrations of a pipe conveying an ideal fluid by Sinir and Demir [20].

Most of these existing publications on the nonlinear dynamics of cantilevered pipe conveying fluid were
focused on single phase flow resolving the governing equations using various methods as highlighted in
the review of literature. However, profoundly among authors who adopted the perturbation approach is
the study of the uncoupled problem, solving only the transverse vibrations independent of the axial
vibration. To the best of our knowledge, a perturbation approach for the resolution of the coupled
nonlinear dynamics of a top tensioned cantilevered pipes conveying pressurized two-phase flow under
thermal loading is still a reserved topic with possible intriguing outcome. In this paper, the governing
equation of motion for the nonlinear coupled axial and transverse vibration of cantilever pipe conveying
two-phase flow is derived and resolved by imposing the method of multiple scales perturbation technique
directly to the systems equations (direct-perturbation method).

1 Problem formulation and modelling

Considering a system of cantilever cylindrical pipe of length (L), having a cross-sectional area (A), mass
per unit length (mp) and flexural rigidity (EI), conveying multiphase flow, flowing parallel to the pipe’s
center line. The center line axis of the pipe in its undeformed state is assumed to overlap with the Y-axis
and the cylinder is assumed to vibrate in the (Y, X) plane (see fig. 1). To derive the system’s governing
equations of motion, the following basic assumptions were made for the cylinder and the fluid: (i) the
mean flow velocity is constant; (ii) the cylinder is slender, so that the Euler—Bernoulli beam theory is
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applicable; (iii) although the deflections of the cylinder may be large, the strains are small; (iv) the
cylinder centreline is extensible.

U mixture

U mixture

Figure 1: System’s Schematics

The centreline of the cantilever pipe is assumed extensible to account for possible expansion due to the
high temperature of the fluid content. The strain expressions and the geometric relation of the centreline
of an extensible pipe are derived as expressed by Semler ef al [3]:

1.1  Derivation of the Equation of Motion

The equations of motion are derived using the energy method. The energy method is based on the
Hamilton’s principle, which is defined as the variations of the time derivative of the Lagrangian. This can
be mathematically expressed as:

t2 t2 n
t 1= =

Where

n is the number of phases in the fluid, which will be 2 for a two-phase flow
M; is the mass of the phases in the fluid

Uj is the flow velocity of the phases in the fluid

L is the Lagrangian operator expressed in Eq. (2)

L=T+ Ty V=V, 2)
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Jp and V, are the kinetic and potential energies of the pipe, and J; and V are the kinetic and potential
energies associated with the conveyed fluid.

The following expressions hold: i, = Ui+ vk andt, = u'p i+ vk

1.1.1  Kinetic Energy

The total kinetic energy of the system is the summation of the kinetic energy of the pipe and the kinetic
energies of the phases/components of the flowing fluid. The velocity vector of the pipe’s centreline is
expressed as:

V= du 4 v, 3

PT 9t "ot )
Therefore, the kinetic energy of the pipe is expressed as:

_ 1 f’“ <au)2 N <6v>2 q .
p=2Mp o [\t at) | )

As illustrated by Semler, the axial elongation of the pipe is complemented by a lateral contraction, due to
the Poisson effect. This will impact the flow velocity of the fluid phases/components such that:

D=1+ /(1 +ae] ) Uy, )
j=1 j=1

Where Uo]- and Uj are the flow velocities before and after elongation, the subscript (j) is used to identify

the various phases/components of the conveyed fluid, (€ ) is the axial strain and (a) relates to the Poisson
ratio (v) as a = 1 — 2v; for an extreme case v = 0.5 and a becomes zero Ghayesh et al [6].

The flow velocity relative to the centerline axis of the pipe is expressed as:

V= {%+Zuj(1 — ae) (1 +3—z>}i+{%+ZU,{1 — ae) (%)}i (6)

Therefore, the Kinetic energy of the conveyed fluid is expressed as:

. 1Zn: M fL (6u>2 N (6V)2 cuelig Zau N (au)2 ) du N 1 (6V)2 N (6V)2
240 o at j ax " \ox A\ ox T2 \ox ax
]:
+2U0 [Ou(1+0u)+6v6 d 7
ot \" Tox) Taraxlf " @
1.1.2  Potential Energy
Semler highlighted that the potential energy is as a result of the elastic deformation of the pipe and the

effect of gravity and the deformation from elastic behavior of the pipe can be linked to the strain energy.
This is expressed as:

L L
1 1
V, = —EAf e?dx + —Elf (1 + €)?k2dx (8)
2 Jo 2 Jo
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This is clearly the combinations of the axial strain effect and the bending strain effect where (E) denotes
the Young’s modulus, (I) denotes the pipe moment of inertia, (A) denotes the cross-sectional area, (€) is
the axial strain and (k) is the curvature term as expressed by Semler.

The thermal effect can be introduced by considering the linear strain tensor as a sum of the strain
contributions from the mechanical stress and the thermal effect. Semler further decomposed the axial
strain into a steady strain component due to externally applied tension (T,) and pressure force component
(P = pA) and an oscillatory strain component due to the oscillations of the pipe. These can be expressed

as:
To—P

— A 0
Gi]' = Gijo + eij + EA (9)
While the stress contributing strain component is as expressed by Semler as:

o _Ou 1 (6u> (617)2 4 1 (617)2 1 <6v>4 10
G Tox 2\ax/\ax) T2\ax) T 8l\ax (10
Considering that the gradient of the transverse displacement of the pipe is far greater than the gradient of
the longitudinal displacement (Z—Z > %). Also, the thermal contributing strain component can be

expressed in terms of the thermal expansivity («) and the difference in temperatures (AT) as
EijA = (—(ZAT) (11)
Substituting Eq. (10) and Eq. (11) into Eq. (9) and then substituting Eq. (9) in to Eq. (8), the resulting
expression is:
2

1 t r 1 112 1 12 1 14 TO_P
vp=EEAf0 [(u —Suv T+ —ov >+ i +(—aAT)] dx

2
With the reference plane in the same direction as the gravitational acceleration, the effect of gravity can
be expressed as:

1 L
+ —Elf [v"z — 20" — 20" — 2v’v”u"]dx (12)
0

n
L
V=g ZMj+m f(x+u)dx (13)
j=1 0

The variations of the time derivative of the algebraic sum of the kinetic energy and the potential energy of
the systems gives the expression on the left hand side term of the Hamilton’s equation.
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1.1.3 Non-conservative work done
As detailed by Semler for a single phase flow, the right hand side term of the Hamilton’s can be expressed
for a multiphase flow as:

n t2
", = Z M;U2, f v/ Svdt (14)
= t1

Physically, this implies a non-classical boundary condition at the free end for a discharging cantilever
pipe. Therefore, a force is imposed at the free end if the velocity of the exiting fluid is not tangential to
the pipe. However this study assumes that the exiting flow remains tangential to the pipe at the free end,
therefore classical boundary condition holds at the free end.

1.2 Equation of motion for multiphase flow
The equation of motion for an extensible cantilever pipe conveying pressurized unsteady multiphase flow
under thermal loading can be expressed as:

n
m+ZMj u+ZMU+ZZMUu +Z:MU2 ”+ZMUu —EAU' — EI(w""v' +v"v'")
=1

+ (T, — P — EA(aAT) — EA)v'v" — (Ty — P — EA(aAT)) + | m + Z M;|g=0, (15)

=1
m+ Z ! U+ZZMUU +ZM Uitv ”—ZaM Uitv ”+ZMUU +EIv""
— (TO —p- EA((IAT))U” _ El(gum A"y 22Ul + 217'2 mey gy'yy" + 217”3)
3
+ (Ty — P — EA(aAT) — EA) (u’v” +v'u’ + - > v’zv”> =0 (16)
The associated boundary conditions are:
v(0)=v'(0)andv"'(L) =v"'(L) =0 a7
u(0)=u'(L)=0 (18)

1.2.1 Dimensionless equation of motion for multiphase flow
The equation of motion may be rendered dimensionless to make the analysis of the system more robust
and not constrained to one specific system by introducing the following non-dimensional quantities;

Cu v [ B e gt _ IMj+m
i ”—z't——zM,.+m] mo U=lg] v v=rr
B-=L Y = M; ,Damping term: u = v

J ZM]+m' 1 ZM

/E(Mj +m) El

o L? . EAL? PL?
I ,Flexibility: II; = Presure: I[l, = —

Tension: Il = T 5l
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Z ﬁ+22'f \/_ﬁu +Z‘1’U Z: ﬁ — L@ — (" + 5" 5"

+ (I, — I, — I, (alT) — 171)17’ 5" — (o — I, — T, (aAT)) +y
=0, (19)

n n n
sz@ﬁﬁﬁwa,ﬁf Z w0, 5" +ZU \/_\/71; — (My — Iy — 0, (aAT))v" + 7"
=1 j =1

_(3—//1 5" 4+ 47" N+2ul ””+217’2 ””+817’ =11 '"+2‘U”3)
3
+ (I, — 1, — I, (aAT) — IT,) (av + 0T+ v’zﬁ”) =0 (20)

The dimensionless boundary conditions are:
v(0)=7"(0)and v"'(L) =v""(L) =0 (21)
#(0)=u'(L) =0 (22)

In these equations, i and v are respectively, the dimensionless displacements in the longitudinal and
transverse direction, (U ;) is the flow velocities of the constituent phases/components used in the
parametric studies of the dynamics of the system, (f;) is the mass ratio same as in single phase flows as
derived by Semler and Paidoussis [8], (¥;) is another mass ratio which is unique to multiphase flow

relating the fluid mass independent of the mass of the pipe, (y) is the gravity term and (I1y, I14, I1,)
represent the Tension term, Flexibility term and the pressurization term respectively.

1.2.2 Dimensionless Equation of motion for two-phase Flow
The dimensionless governing equation can be reduced to that of a two-phase as:

Gt + Uy Wi/ By + Up /W[ Bz + 200 [T Brit’ + 20, [ W [Bol + W, U, 0" + W, 0, 0" +
Uy JUL B + Uy [ Bt — " — (5""'5" + 7" 5"") + (Ily — M, — M, (@AT) — 0,)5'5" —
(Ily — I, — M, (aAT)) +y =0, (23)

5+ 20, [ Bt + 20, [T Bat’ + W UL 0" + WU, 0" — a®y U, 0" — aW, Uy 0" +
U_l\/Fl\/—ﬁ’ _l_U;z\/?z\/Eﬁl_(no_ _Hl(aAT))vII+17[III (3uIII 5"+ 40"+ 20 +
20725 + 80" 0" 0" + 20""%) + (g — M, — I, (@AT) — 1) (a'v" +o'u + 2525 ) =0 (24)

The associated dimensionless boundary conditions are:
v(0)=7"(0)and v"'(L) =v""(L) =0 (25)

7(0) = (L) =0 (26)
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1.2.3 Governing Equation for a steady two-phase flow
i+ U,C210' + U,C221 + C31T; 0" + €320, 0" — 50" — (39" + 9"'9"") + C69'%" — C7' +y =0 (27)

40,0215 + U,C228" + C310,° 5" + €320, 5" — aC310, 0" — aC320, " — C7Tv" + 7" — (305"
45" + 2 " + 2—72 5"+ 855" + 217713) +C6 (urv// +o'a 42 ,Ulz —H) =0 (28)

For a steady flow, velocities are not changing with time, therefore U1 U2 =0 (29)
The associated boundary conditions are:

v(0) =7'(0)and 7" (L) =v""(L) =0 (30)
u(0) =u'(L)=0 (31D
Equations (27) to (31) are obtained using the notations:

C11 = J¥1/B,, C12 = JW,\/B,, C21 = 2./W /By, C22 = 2,\/¥,\[B,, C31 =¥,
C32=%¥,, C5=1;, C6 =(ll,—II, — II,(aAT) — I1,), C7 = II, — II, — I1, (aAT)

1.3 Empirical gas-liquid two-phase flow model
The components velocities in terms of the superficial velocities are expressed as:

Vg =Ugvf, Vi =U(1-vf) (32)
Where U, and U, are the superficial flow velocities.

Adopting the Chisholm empirical relations as presented in [24],

Void fraction:
-1
= — _ P\ (1=x\(Pg _ Volume of gas
vf B [1 Y <1 Pg) ( X ) (Pz)] " Volume of gas+Volume of Liquid (33)
Slip Ratio:
Vs P 1z
4 Py (34)

The vapour quality: (x)

The densities of the liquid and gas phases respectively: (p; and py)
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Mixture Velocity:
Ve = Ugvf + U (1 — vf) (35)
Individual Velocities:

V. SV.
V= V=0 (36)

For various void fractions (0.3, 0.4, and 0.5) and a series of mixture velocities, the corresponding slip
ratio and individual velocities are estimated and used for numerical calculations.

2 Method of Solution

Exact solutions of nonlinear equations are almost not available; an approximate solution will be sought
for by utilizing the multiple time scale perturbation technique. This approach is applied directly to the
partial differential equations (27) and (28), given that the common method of discretizing the equations
first and then applying perturbation method yields less accurate results for finite mode truncations and
higher order perturbation schemes [14, 15, 16 and 17].

Adopting perturbation techniques, it is necessary to decide the terms to be considered small or weak.
However, the study considers the contributions of the nonlinear terms, gradient term and gravity term to
be small compared to the linear terms.

ii + U,C2140 + U,C2211" + €317, 0" + €320, 0" — C5u” + e(—(@""'0' + 7"'5"") + C65'5" —
C7' +v;) =0, (37)

b+ U,C219" + U,C220" + C31T; 0" + €320, 0" — aC31U; 0" — aC32U, 0" — CTv" + """ +
E (_(3&///5// + 417111,'1/[ + zalﬁllll + 217[2171111 + 85/171113/” + 25//3) + C6 (ﬁ,ﬁ” + ﬁla” +

312y

5U 25 )) =0 (38)
We seek an approximate solution for # and v in the form:

u= {lo(To, Tl) + Sﬁl(TO, Tl) + SZﬁZ(TO, Tl) + O(E) (39)
U= ﬁo(To, Tl) + Sﬁl(TO'Tl) + gzﬁz(To,Tl) + 0(5) (4‘0)

Two time scales are needed T, =t and T; = &t

Where ¢ is a small dimensionless measure of the amplitude of % and ¥, used as a book-keeping parameter.
Then, the time derivatives are:

d

Frin Dy + €Dy +€2D, + 0(¢) (41)

dz 2 2 2

Frohe Do“ + 2eDyDy + (D © + 2DyD,) + 0(¢) (42)
a

Where D,, = Fr
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Substituting Eq. (42), Eq. (41), Eq. (40) and Eq. (39) into Eq. (37) and Eq. (38) and equating the
coefficients of () to zero and one respectively:

U-Equation:
0(e%). Dy iy + C21Dyit,' U, + C22Dy1, " U, + €311, U, + €321,"'T,” — C54," =0 (43)

0(eY). Dy’ + C21Dyi,' Uy + C22Dyi,' U, + 2D, Dyllp + €314, U, > + €321, U,” + C21D, 1, U, +
C22D0ﬁ0,l72 - CSﬁl” - 170””170’ - C7’ + y - 170”170”’ + C6ﬁ0’170” = O (44)

V-Equation:

0(e%).  Dy’5y — CT5," + " + C21D, B, Uy + C22D, 5, Uy + €313, U,” + €325, U,” — aC31%,"T," —
aC32%,"'0," = 0 (45)

0(81). Dozﬁl - C7‘l71” + 171”” - 2170,170”” - 41.7,0”170”’ - 3170”170”’ - 2503” + ZDODlﬁO + C311.71”U12 +
€320,"U," — 80,8y 0" + C6y' D" + C61y" By’ +2 €602 By + C21DoPy' Uy + C22Do,' Uy +
€21D,5,'U, + C22D,,'U, — aC31%,"T," — aC32%,"T," = 0 (46)

The order zero problems for both the axial and transverse vibration of the cantilever pipe have the form of
an undamped and unforced flow induced vibration problem. This will be used to estimate the linear
natural frequencies and mode shapes while the order problem will be solved to obtain the amplitude of the
nonlinear response of the pipe.

2.1 Linear Analysis

The leading order equations present a set of linear equations which relates the flow velocity generated
forces (Coriolis and Centrifugal forces) to the stiffness of the pipe and not neglecting the mass ratios.
These set of linear equations exhibits the form of an eigenvalue problem, which upon resolution will
produce the natural frequency, mode shapes and also predict the stability of the system,

2.1.1 Natural frequencies and modal functions

Estimation of the Natural frequencies and modal function is an order zero problem that can be determined
by resolving Eq. (43) and Eq. (45).

The homogeneous solution of the leading order equations Eq. (43) and Eq. (45) can be expressed as:

u(x,To, T1)o = $(x)y exp(iw,Tp) + CC (47)
v(x, Ty, T1)o = n(x)y exp(ir,Ty) + CC (48)

Where (CC) is the complex conjugate, ¢(x), and n(x), are the complex modal functions for the axial
and transverse vibrations for each mode (n) and w, and A,, are the eigenvalues for the axial and
transverse vibrations for each mode (n).The eigenvalues are complex values with complex conjugate pair
of solutions which can be expressed as:

wy, = Re(wy,) + ilm(w,) and @, = Re(w,) — ilm(w,)

A, = Re(w,) + ilm(A,) and A,, = Re(1,) — ilm(A,)

10
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The real parts of the eigenvalues are associated with the natural frequency of oscillation and the
imaginary part with the damping.

Substituting Eq. (47) and Eq. (48) into Eq. (43) and Eq. (45) respectively, results to:

(€310,% + €320,° - €5) p(0),” + (€210, + C220)iwn () = P =0  (49)

@), + (€310, + €320," — €7 — aC310," — aC320," ) n(@)," + (€217, + C220,)idyn ()’ —
N(Onn” =0 (50)

The general solution to the ordinary differential equations Eq. (49) and Eq. (50) are expressed as:
¢ (X)p = Gl, exp(ik x) + G2, exp(ik,x) (51D
n(x), = Hl(exp(iz;x) + H2exp(iz,x) + H3 exp(izzx) + H4ex p(iz4x) (52)
2.1.2  Solution to axial vibration problem

Substituting Eq. (51) into Eq. (49) gives a quadratic relation of the form:

(¢5 - €310," - €320,%) k;? — (€210, + C220,)itwyk; — w,? = 0 (53)

Solving the quadratic equation (53) for the wave numbers (k;) as a function of the eigenvalue (wy):

c210, | 220, , JC212U12 +2C21C220,0, + €222T,° — 4C310,° — 4C320,° + 4C5
ey = wp | —2 2 — Z (54)
s — €310,° — €320,
c210, , c220, \/62121712 +2C21C220,T, + €2220," — 4C310,° — 4€320,° + 4C5
ky = wy | —2 2 — 2 (55)
C5 - €310,° — €320,

In order to obtain the eigenvalue, Eq. (51) is substituted into the boundary conditions in Eq. (31):

(1t

¢6(x ) =0and ¢(0,t) =0 (56)
G1+G2=0 (57)
and
Glkliexp(iLk,) + G2k2iexp(iLk,) =0 (58)

11
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In matrix form:

1 1 G1\ _
(iklexp(iLkl) ikzexp(iLkz)) (Gz) =0 (59)
D
For a non-trivial solution, the determinant of (D) must varnish;

—ik, exp(iLky) + ik, exp(iLk,) =0 (60)

Substituting Eq. (54) and Eq. (55) into Eq. (60) and solving for the eigenvalue:

2nmn —i.ln (3)

w, = ———=~, n=123,.. 61
n (a _ b)L ( )
Where:
=2 = = = 2 = 2 = 2
210, €220, \/6212U1 +2C21C220,0, + €2220,° — 4C310,° — 4C320,° + 4C5
2 t—o °F 2
a =

’

C5 — €317,° — €320,°

210,  c220, ch12U12 +2C21C220,T, + €2220,° — 4C310,° — 4€320,° + 4C5
P 2
C5 — €317,° — €320,°

Eq. (61) is the pipe’s axial vibration eigenvalue. Solving Eq. (57) and Eq. (58) gives the constants G1 and
G2. Therefore, the modal function for the axial vibration of the pipe is expressed as:

d(xX)p = Gl, exp(ik x) + G2, exp(ik,x) (62)

Substituting Eq. (51) into Eq. (47) yields:

u(x,To)o = X3=1 Gjn exp(ikjnx) exp(iw, Ty) = Y71 Gin exp(—Im(kjnx) —
Im(wnTo)) exp(i(Re(kjnx) + Re(a)nTO))) (63)

It can be observed from Eq. (63) that the real part is the natural frequency and the imaginary part is the
amplitude. However as the mixture velocity is varied, a critical value of the mixture velocity is attained
when the imaginary parts of any of the eigenvalues (w,,) will have a negative value which will cause the
axial displacement (i) to grow exponentially in time and this linearly signifies the onset of the system’s
oscillatory instability.
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2.1.3 Solution to transverse vibration problem
Substituting Eq. (52) into Eq. (50) gives a quartic relation:
24 + (€7 = €310, - €320," + aC310," + aC320,") 2%, — (€210, + C220,)zu2y = A2 = 0 (64)

j=1234andn =1,234,5..
In order to obtain the eigenvalue, Eq. (52) is substituted into the boundary conditions in Eq. (30):

This gives four algebraic equations which can be expressed in matrix form as:

1 1 1 1 1 0
Z1n Zon Z3n Zsn | H2, 0
(z1)%. exp(i. 21n)  (Zan)? exp(iZpp)  (Z3n)?.exp(i. Z3)  (24n)° exp(i. Z4-n)J |H3n | Hl, = 0 (65)
(212)%. exp(i. 21n)  (220)° exp(i. 255)  (230)°.exp(i. Z3,)  (24n)°. exp(i. 24)] LH%n 0
G
For a non-trivial solution, the determinant of (G) must varnish, That is:
DET(G) =0 (66)

In order to find modal solutions of (4,), Eq. (64) and Eq. (65) must be solved simultaneously, this can be
solved numerically using nonlinear numerical routine.
The mode function of the transverse vibration corresponding to the nth eigenvalue is expressed as:

nx), = Hl,.[e**n*—(A+B+C+D)—E] (67)
A _ eX-Zan L, [E Z1n 'l-(zln)3-22n_ eZ1in 'l-(zln)3- Zan— € Zin -t Z4n-(Z1n)2 Zan
(Zan— Zan)-(Zzn— Zan) -[e 720 1.(22) 2~ e Z3n 1 (z37,)?]

B = eXzant [e Zln'l-z4n-(21n)2-z3n_ e “2n 'L-Zln-(zzn)3+ eZ2nt, zyy. Zln-(zzn)z

(Zan— Zan)-(Zan— Zan) -[e 221 L(Z2n) % — e Z3n 1 (234)?]
C = eXZan-l 731z, .(23n)3— e %3 Lzyn 210 (23n) %+ €720 (250)3 235

(Zan— Zan)-(Zan— Zan) -[€ 221 1.(Z2n) 2~ e Z3n 1 (23)?]

D= eXZant [—eZ2n-lz,, -(Zzn)z-z3n_ e?3 'l-ZZn-(Z3n)3+ e?3t -Z4-n-ZZn.(Z3n)2

(Zan— Z4n)-(Zan— Zan) .[€ 221 L.(Z2) %~ e Z3n 1 (23,)?]
E = e*Z2nt (z1n— z4pn).[e 71 L. (Zln)z— e?3 'l-(ZBn)Z] e*Z3 1 (z1n— z4pn).[e 1N L, (Zln)z— ezzl-(zzn)z]

(Zan— Zan)- [€ 22 1.(2z2n)%— € %3 .(z3n)?] (Z3n— Zan)- [€ 22 (Z2n)?— e %31 (230)?]

Substituting Eq. (52) into Eq. (48) yields:
V(x,To)o = X1 Hjn exp(izjnx) exp(id,Ty) = Yio1 Hin exp(—Im(zj,x) —
Im(/lnTO)) exp(i(Re(zjnx) + Re(/lnTO))) (68)

It can be observed from Eq. (68) that the real part is the natural frequency and the imaginary part is the
amplitude. However as the mixture velocity is varied, a critical value of the mixture velocity is attained
when the imaginary parts of any of the eigenvalues (4,,) will have a negative value which will cause the
transverse displacement (¥) to grow exponentially in time and this linearly signifies the onset of the
system’s flutter instability.
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2.2  Nonlinear Analysis

Linear analysis of the system is sufficient for the prediction of the critical velocity at which instability
will occur but cannot predict the post buckling behaviour. Linear theory has shown that buckling
amplitudes will grow unboundedly with time after the critical velocity, however, as amplitudes grow,
effect of nonlinearities comes into play. This predictably limits the growth to some finite value [21-23].

2.2.1 Nonlinear axial and transverse vibration problem

The solution to the nonlinear axial and transverse vibration problem by seeking an approximate solution
for 4 and v of the form:

u =1uy(To, Ty) + euy(To, Ty) + 521—12 (To, T1) + 0(e) (69)
v = 7o(To, Ty) + €01 (Ty, Ty) + €25,(Tp, Ty) + 0(e) (70)

The zero order solutions produced the undamped and uncoupled linear solution of the axial and transverse
vibration respectively as:

a(x, Ty, T)o = ¢(x) X(T)exp(iwT,) + CC (71
v(x, Ty, Ty)o = n(x)Y (Ty) exp(irTy) + CC (72)

Where X and Y are unknown complex-valued functions of the slow time scale Ty, (CC) is the complex
conjugate, ¢(x) and n(x) are the modal functions for the axial and transverse vibrations for and w =
Re(w)and A = Re(A) (The real parts of the complex frequencies) are the natural frequencies for the axial
and transverse vibrations.

Substituting Eq. (71) and Eq. (72) into the equations (44) and (46) gives;
Dy*iiy — C5T," + C21D,1, Ty + C22D411,' T, + €317, + €321, 0," = — (€21 25229,

X(T1) 8p(x) = ax(T1) 2 () d*n(x) | 9*n(x) 3n(x) . In(x) 3*n(x)
22 0B, 4 21 2 )exp(la)TO)+Y(T1) ( 0 ¢ TLRITD e IR

NST +CC =0 (73)

) exp(2iAT,) +

Dozﬁl - C7171” + 171”” + CZlDoﬁllUl + C22D051,U2 + C31ﬁ1”l_]12 + C32ﬁ1”l_]22 - aC3151,,U12 -

_ _ _ - 2 a7
aC32v,"0," = (% (cu%u1 + 22227, + zn(x)/u) + 6Y(T1)?Y(T1) (M) 2 4

3
2Y(T1)%Y(T1) (aﬂ(x>) o n(x) + 4Y(T1?Y (1) 2@ an(x) Bnix)a 1) L gy (T1)2V(T1) Bnix)a 1G9 °nG)

ox2  0x3
37)
8Y(T1)2Y(T1) "”’S‘)" 6’7(2")" a”(j’ 3C6. Y(Tl)ZY(Tl) "”(x’ "”’i""" 1% 4 gy (T1)2Y(T1) "”’ix” a’;(zx)" 6’1(3")

2 6.y (TP (T (212)°2 ”(")) exp(iAT,) + (zx(m)y(n) +

aP(x) 3*n(x)
0x2 dox

64

AX(TOY (T L2% q’(")" ”(")) exp(iwTy) exp(—idTy) — (C6X(TDY(TD) a“’i")a 1C)

Ox 2
) exp(iwTy) exp(—iATy) + 3Y (T1)2° a”(") 20 oxp(2iAT,) + NST + CC = 0
(74)

+

C6X(TVY(TD)

6n(x)6 d(x)
ax  9x2

Where CC and NST denote complex conjugates and non-secular terms respectively
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The next task is to determine the requirements for X(T1) and Y(T1) that permits the solutions of #; and
U, to be independent of secular terms. However, examining equations (73) and (74), it can be observed
that two scenarios exist w # 24 and w = 24.

2.2.2 When w is far from 24

If w is far from 24, then none of the coupled nonlinear terms will generate secular terms, therefore
resulting to uncoupled response.

The two equations (73) and (74) will have bounded solutions only if solvability condition holds. The
solvability condition demands that the coefficient of exp(iwT,) and exp(iAT,). That is, X (T1) and Y
(T1) should satisfy the following relation:

0X(T1) 6¢(x)
dT1

6X(T1) 6¢(x) 6X(T1)

X0, +C22

—(c21 222 T, + 2i $p(N)w) =0 (75)

xa ) 1D, an()\2 a7
( D (c21 220, + 2227, + 2n(x) i) + 6Y (TDAY(TT) (22 "x) ot

ZY(Tl)ZY(Tl) (anix)) a* 77(95) + 4Y(T1)2Y(T1) 077(95) BU(X)B 77(X) + 8Y(T1)2Y(T1) anix)aaz(zx) 0367;(39()
8Y(T1)?Y(T1) "”’S‘)"’ 6’7(2")” ;(;0 3C6. Y(T1)2Y(T1) "”’(x’ "”’i""" 19 + 8y (11)?Y (T1) L2 21D a’;(z") ”Z’i(;‘)
am)\* a%n(x)\ _
2ce. Y(T1)2Y(T1)( ) W) =0 (76)
With the inner product defined for complex functions on [0, 1] as:
1
f.9)= [ raax )
0
Equations (88) and (89) can be cast as:
8X(T1)
— = 78
aT1 (78)
aY(T1) _
+ SY(T1)?Y(T1) =0 79
e SY(TD?V(TT) (79)
am\2an( | . (an\2a* 00 |, anxanm@atn(x) | an(x)82n0083n(0)|——
Where: S = 01[6( gx ) g—x+2( gx ) 614 H4 gx gx) 624 +8 gx 619152 61:1:3 ]n(x)dx+
’ (621U1+622U2)fla"(x)r](x)dx+2111fo GO0 dx

s 20082 n(x)83n(x) 3c,an(x)6n(x)62n(x).oan(x)azn(x)63n(x) 3. (Bn(x) 292900 0 dx
0 dx 9x2 9x3 °Tax ox o0x2 ' ° ox 9x2 oax3 2° ax ) oaxZ

20O Gy doc+2iA f n(om@)dac

(€210, +C€2207) |,
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Solving equation (78) for X(T1), gives a constant amplitude solution up to the 1st order of approximation:
X(T1) = ax, (80)

To determine Y (T1), the solution of equation (79) is expressed in polar form as:

Y(T1) = %ay(Tl)eiﬁy(Tl) and Y(T1) = %ay(Tl)e‘iﬁy(Tl) (81)

Where S is a complex numbers such that:

S=SR+is!

Substituting equations (81) into equations (79) and sorting the outcome into real and imaginary parts:

Resolving for ay and fy:

Real Part:
day(T1)  Re(S)ay(T1)?
dT1 4 (82)
T1) = 2 83
() = | Re) + Re()TD) (83)

Imaginary Part:

dpy(T1) _ Im(S) ay(T1)3

ay(T1) T 2 (84)
_ [Im(S) Im(S)
BY(TD) = = | 3o (nIRe(S)TT + ayaRe(SID] + [Byo - 7o In(@) | (85)
Substituting equations (82) and (81) into equations (69)
_ 1 {1m(S)
Y(T1) = N OLEETA exp (—l (ZRe(S) (In|Re(S)T1 + K0|)> + K1> (86)

Where K, and K, are constants expressed as:
Ko = ayoRe(S)

Im(S)

2Re(S) l"(z)]

Ky =—i|Byo —

ay, and By, are arbitrary constants of integration representing the initial conditions.
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Substituting equations (86) and (80) into equations (71) and (72) respectively, the corresponding
nonlinear frequencies can be expressed as:

Wnp = W (87)

Im(S)

Anl:/l-l_SZRe(S)

(ayo® + 4ayo® + 6ayo) (88)

Therefore, considering the n-th values of ax(T1), ay(T1), Bx(T1) and By(T1) corresponding to the n-th
modal functions and the n-th natural frequencies, the n-th solution of uncoupled problem is expressed as:
u(x,t), = ax(T1),¢(x), cos(w,T0) + 0(¢) (89)

v(x, )y = ay(TDpn(x)n cos(A,T0 + By(T1),) + 0(e) (90)

Substituting T0 = t, T1 = et, the first order approximate solution is expressed as:

(00

u(x,t) = Z axn | (x),| cos(wpt + @x,) + 0(¢) 91)
n=1

7066 = ) ayln(al cosCnt + By(T Dy +93,) +0() (92)
n=1

Where the phase angles ¢x,, and ¢y, are given by:

(@@} o im0,
Re{p@n} P T Reln()n}

2.2.3 When w is close to 24

tan(px,,)

However in order to examine the coupled nonlinear dynamics of the system, which is the scenario
when w = 24, a detuning parameter o is introduced.

w=21+c¢o0 93)
2AT0 = wT0 — 0T1 and (w — A)TO = ATO + oT1 (94)

The two equations (73) and (74) will have bounded solutions only if solvability condition holds. The
solvability condition demands that the coefficient of exp(iwT,) and exp(iAT,) vanishes. That is, X (T1)
and Y (T1) should satisfy the following relation:
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4 2 3
(6216X(T1) 6¢cix) U1 + szax(Tl) 6¢(x)U +2i 6X(T1)¢(x)w) + Y(Tl)z (6115(3:)6 n(x) + 9°n(x) 8°n(x) _

oT1 ox* ox2  9x3
an(x) *n(x) :
C6 Zxx a" e )exp(—lchl) =0 (95)

T (21297 sy an)\2 a7
( D (c21 220, + 22227, + 2n(x) i) + 6Y (TDAY(TT) (22 ) ot

3
2v (T2 (D) (29)° 219 4 4y (ry2y (7D LD LD 2D 4 gy (1) 77y 2 LI 2060

ox2  9x3
3.(+)
8y (11)27 (1) 2220 210 100 — 3¢6. Y(Tl)ZY(Tl) DN TID | gy (r1)27 (11) 2L

axz  ox® Toxz  ax®
2
2c6.Y(T1)?Y(T1) (a"i")) 2 "(")) (2x(rY D) "‘bi")a G 4X(T1)Y(T1)" ‘1’(")" ’7("))

P exp(l(/l To +

oT)) — (C6X(T1)Y(T1) 200 0% "(") + C6X(T1)Y(TD) "’"i") aaLgx)) exp(i(,To + aTl)) +
3Y(T1)2 aa"(") 2P0 exp(t(wnTo —0Ty)) =0 (96)
The equations can be cast as:
0X(T1
_ox(T) +J2Y(T1)?exp(—iocT;) =0 97)
aT1
6Y(T1)

+K3(Y(T)?Y(TD) + K4(X(T)Y(T1) exp(icTy)) + K5(Y (T1)? exp(—iaT)) =0 (98)

Where:

amx)d*n(x)  3%n(d3n(x)_ . dnx)d%n(x)
]2 fﬁ[ dx ax* + ax2  9x3 ce ox 9x? ]¢(x)dx

fy [(621U1+C22U2)d¢(x)+21w ¢(x)]¢>(x)dx

ameN\20m@ | . (ameN\204 () | , anx)an@atn(x) | Lanx)a2nE)83(x)
fol[(a)a“L(a) T A T 875 2 3](x)dx
K3 — x X x ox x X 0x X Ox ax +
(621U1+C22U2)f16nix) GOdx+2i2 [} n(OnGxdx

s g2 N30 _ 4
0 ax 9x2 9x3 dx 0x 0x2 - dx 09x2 9x3 2“

1a"(x)r](x)dx+21/1 fo nCONn(x)dx

621N () | ()8 (0830 _3 (an(x) an(X)] dx
ax

(€210, +C2205) |,

f1 26(I>(x)6411(x)|A62<I>(x)63n(x) C(6¢(x)62n(x) Ccan(x)az
0 ax ox* ' 9x2 a3 °Tox  9x2 ox

1an(x)r/(x) dx+2i fo n(n(x)dx

CD(X)] (x)dx

K4
(€210, +C2205) [,

n(x)dx

—=n(x)dx+2id fo nC)n(x)dx

sz dx3
nx)——=

1 an(x)63n(X)
INEarrarrn

K5 =

(C21U1+CZZU2)f0 P

To determine X(T1) and Y(T1), the solution of equations (97) and (98) is expressed in polar form:

1 . 1 .
Y(T1) = an(m)elﬁy(“) and Y(T1) = an(m)e—lﬁy(“) (99)

1 1
X(T1) = —ax(Tl)e‘ﬁx(“) and Y(T1) = —ax(Tl)e“ﬁx(Tl) (100)
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Substituting into the solvability condition and separating real and imaginary parts. The following set of
modulation equation is formed:

]ZRuy(Tl) dax(T1)  J2lay(T1)?

0= os(p1) — 220D _ HDTD. gin (1)

0= da;T(?) i K3RaZ(T1)3 _ KSRa;/(Tl)Z cos(2) — KSIay(Tl) KSIyT? G (2) — K4Ray(T1)ax(T1) cos(1) — K4Iay(T1)ax(T1) sin(y1)
(111)

0= jizRay(Tl) sin(y1) — ax(T1) dﬁ;gl) +]21ay(T1) cos(y1)

0= ay(Tl) dB:T(:D +— KSRW(T” sin(¥2) + ———— K3my(n)3 I(Slay(Tl) ——————cos(y2) — wcos(wl) + wsm(lpl)

Where:

Y1 = Bx(T1) — 2By(T1) + 0T1 and P2 = By(T1) —oT1

J2R,K3R,K4R,and K5R are the real part of J2,K3,K4 andK5
J21,K31, K41, and K5R are the real part of]2,K3, K4 andK5

Seeking for stationary solutions, a(x)’ = a(y)’ = 1’ =2’ = 0 in modulation equations (112);

0= ]2Ray(T1) S(l,bl) ]Zszy(Tl) n(l,bl)

0= K3RaZ(T1)3 _ KSRa;/(Tl)Z COS(l/JZ) KSIay(Tl) m(1p2) K4Ruy(T21)ax(T1) cos(lpl) K4Iay(T21)ux(T1) n(lpl)

0= Msm(lpl) —ax(T)o + ———— ]ZI(W(TD cos(y1) (113)
0=ay(T)o + —— KSRay(Tl) sin(y2) + KSIay(T1)3 KSIa}ZI(Tl)Z cos(yY2) — wcos(lpl) + ws n(yY1)

The linear solutions can be obtained by setting the coefficient of the nonlinear terms to zero. Therefore,
ax(T1) = ay(T1) =0 (114)
The nonlinear solutions can be obtained by solving for ax(T1) and ay(T1) completely.

With the notations: CS = cos (Y1), SS = sin(y1)

ax(T1) can be obtained by resolving the quartic frequency amplitude relation:
A.ay(TD*+ B.ay(T1)?+C =0 (115)

Where:

A = 02K3I? + 0%K3R? + CS?J212K41% + CS?J2I1?K4R? + CS?]J2R?K41? + CS?J2R2K4R? + J21?K41%SS? +
]212K4RZSS2 + ]2R2K4IZSS2 + ]2R2K4-RZSS2 — 2CS.0.K31.K41,/]J2I% + J2R? — 2CS. 0. K3R.K4R,/]21? + J2R? +
2 0.K31.K4R.SS/]J212 + J2R? — 2 0. K41. K3R. SS,/] 212 + J2R?

B = —[4 0?K51% + 4 0?K5R? — 8 03K3I + 8CS. 0. K41/J212 + J2R? — 8 02 K4R.SS.0\/J21% + ]2R2]

C=160*
The solution of the quartic equation (115) will produce four roots of ay(T1):

ay(rD) = + |- CTHD o gy(ry) = 4 [SEREHD (g4
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However, the acceptable solution for ay(T1) is the root of the quartic equation (115) that is real and
positive [25-27]. The expression for estimating ox(T1) is defined in terms of ay(T1) as:

ax(T1) = %[J (2 2R"‘y(“)z)2 + (L 2"”(“)2)2] (117)

2 2

Considering the n-th values of ax(T1), ay(T1l), Bx(T1) and By(T1) corresponding to the n-th modal
functions and the n-th natural frequencies, the n-th solution of coupled problem is expressed as:

a(x, t), = ax(T1),¢(x), cos(w,TO + Bx(T1),) + 0(¢) (118)

v(x, )y = ay(TDpn(x)n cos(A,TO + By(T1),) + 0(e) (119)

Substituting: T0 = t,T1 = et, ax(T1), = ax,, ay(T1), = ay,, Bx(T1), =1, +2By(T1), —
o,T1, By(T1), =2, + 0,T1 and 6,,T1 = w,TO — 24, TO

The first order approximate solution is expressed as:

u(x,t) = Z axp|p(x),| cos(Pl, + 292, + 2tw, — 2tA, + @x,) + 0(¢) (120)
n=1

P50 = ) @yaln(n] cos@2, + twn = thy + py,) + 0(2) (121)
n=1

Where the phase angles ¢x,, and ¢y, are given by:

Im{¢(x)n} Im{n(o)n}

@) = Retpma)” WO = Relr(o,)
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3 Numerical Results

This section presents the numerical solutions of the nonlinear dynamics of a cantilever pipe conveying
steady pressurized air/water two-phase flow. The axial linear natural frequencies for different flow
velocities are estimated analytically from equation (61) while the transverse linear natural frequencies are
estimated by solving equations (64) and (65) simultaneously with a numeric code written in Matlab.

Table 1: Summary of pipe and flow parameter

Parameter Name Parameter Unit  Parameter Values
External Diameter D, (m) 0.0113772

Internal Diameter Di(m) 0.00925

Length L (m) 0.1467

Pipe density Ppipe (kg/m?) 7800

Gas density PGas (kg/m?) 1.225

Water density Pwater (kg/m?) 1000

Tensile and compressive stiffness EA (N) 7.24E+06

Bending stiffness EI (N) 1.56E+03

Considering a simple system with p=0.2 and I11=100, I10= I12=0, a=aAT=0 for a single phase flow
through the pipe, the natural frequency Argand diagram plot for the axial and transverse vibrations are
presented in Figure 2 and Figure 3.
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Figure 2: First four modes axial dimensionless complex frequency as a function of dimensionless
single phase flow velocity
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Figure 3: First four modes transverse dimensionless complex frequency as a function of
dimensionless single phase flow velocity

The Argand diagram of the axial vibrations shows that as the fluid velocity tends towards the critical
velocity; all the paths move towards the origin of the Argand diagram, while it can be seen for the
transverse vibration that as the velocity attains higher values, the Im(w) in the second mode of the system
starts to diminish and in time becomes negative; Therefore, a Hopf bifurcation occurs at an approximate
dimensionless velocity of 5.65 which is the critical velocity at which the systems becomes transversely
unstable.

Table 2: Summary of the linear single phase solution’s critical flow velocity

Fluid Void B B L4 L4 Critical velocity
Fraction Liquid Gas Liquid Gas

Transverse Axial
Single Phase NA 0.2 0.0 1.0 0.0 5.653 14.149

The nonlinear behaviour of the pipe will be examined for both scenarios when there is coupling of the
axial and transverse vibration and when both are uncoupled. The uncoupled nonlinear transverse
frequency presented in Eq. (88) demonstrates a cubic nonlinear dependence of the uncoupled transverse
frequencies on amplitude. The quartic expression presented in Eq. (115) relates the frequency detuning
parameter for the coupled axial and transverse vibration with the amplitude. These expressions will be
used to plot the frequency response curves for both the uncoupled and coupled scenarios and the
nonlinear behaviour of the pipe as it conveys two-phase flow at a supercritical mixture velocity “flow
velocity larger than the critical velocity”

3.1 Effects of two-phase flow on the dynamic behaviour of the pipe

The effect of two-phase flow is studied by considering the nonlinear response of the cantilever pipe as the
void fraction of the two-phase flow changes. Similar to the single phase flow, the Argand diagram of the
eigen-frequencies, , is used to find the critical velocities of the two-phase flow for the various void
fractions (0.3, 0.4 and 0.5), with the corresponding slip ratios estimated from the Chisholm empirical
relations presented in equations (32) to (36).
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Table 3: Summary of the linear two-phase solution of critical flow velocities

Transverse Axial

0.3 0.19998 0.00010 0.99948  0.00052 12.505 31.634
0.4 0.19997 0.00016 0.99918  0.00082 13.349 33.750
0.5 0.19995 0.00024 0.99878  0.00122 14.613 36.966

* Critical mixture velocity based on Hopf bifurcation of 2" mode

Considering a supercritical mixture velocity of 15 and book keeping parameter (g) of 0.1, the nonlinear
frequency amplitude variations and coupled frequency response of the second mode, which is the stability
determining mode in the linear sense, is plotted for various void fractions.

1.2
1
—#—Nonlinear Two Phase, Vf=0.3
0.8
—&—Nonlinear Two Phase, Vf=0.4
5 0.6 ;
@ Y —+—Nonlinear Two Phase, Vf=0.5
0.4 —Linear two phase Vf=0.3
- Linear two phase Vf=0.4
0.2
——Linear two phase Vf=0.5
0
13 13.5 14 14.5 15 15.5 16 16.5
Natural Frequency

Figure 4: Nonlinear frequency —amplitude variations for various void fractions
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Figure S: Nonlinear frequency response for various void fractions
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It can be seen in Figure 4 that as the void fraction increases, the natural frequency reduces. A hardening
nonlinear behaviour is observed in the dynamic response of the pipe for all the examined void fractions.
As seen in Figure 5, as the detuning parameter is increasing, bifurcation is observed for the various void
fractions examined. Also, it can be observed that the amplitude of the coupled transverse vibration is
reducing as the void fraction increases.

3.1.1 Effects of temperature difference on the dynamic behaviour

The effect of temperature differences on a cantilever pipe conveying two-phase flow is studied by
considering the nonlinear response of the cantilever pipe as the temperature differences of the two-phase
flow with void fraction of 0.3 changes. Similar to the single phase flow, the Argand diagram of the eigen-
frequencies, , is used to find the critical velocities of the two-phase flow for the various temperature
differences (0, 40 and 50), with the corresponding slip ratios estimated from the Chisholm empirical
relations presented in equations (32) to (36).

Table 4: Summary of the linear two-phase solution of critical flow velocities for varying
temperature difference

Parameter Void Thermal expansivity Critical mixture velocity
LD @ Transverse* Axial

DT=0 0.3 0.002 12.505 31.634
DT=40 0.3 0.002 9.253 31.634
DT=50 0.3 0.002 8.237 31.634

* Critical mixture velocity based on Hopf bifurcation of 2™ mode

Considering a supercritical mixture velocity of 15 and book keeping parameter (¢) of 0.1, the nonlinear
frequency amplitude variations and coupled frequency response of the second mode, which is the stability
determining mode in the linear sense, is plotted for various temperature differences.

1.2
1 /.
—8— Nonlinear two phase DT=0
0.8 —#— Nonlinear two phase DT=40
n? 0.6 —+o— Nonlinear two phase DT=50
Linear two phase DT=0
0.4
—— Linear two phase DT=40
0.2 = Linear two phase DT=50
0 4 <
14 15 16 17 18
Natural Frequency

Figure 6: Nonlinear frequency —amplitude variations for various temperature differences
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Figure 7: Nonlinear frequency response for various temperature differences

It can be seen in Figure 6 that as the temperature difference increases, the natural frequency increases. A
hardening nonlinear behaviour is observed in the dynamic response of the pipe for all the examined
temperature differences. As seen in Figure 7, as the detuning parameter is increasing, bifurcation is
observed for the various temperature difference examined. Also, it can be observed that the increase in
temperature difference did not create significant changes in amplitude of the coupled transverse vibration.

3.1.2 Effects of flow pressure on the dynamic behaviour

The effect of pressurization on a cantilever pipe conveying two-phase flow is studied by considering the
nonlinear response of the cantilever pipe as the pressurization of the two-phase flow with void fraction of
0.3 changes. Similar to the single phase flow, the Argand diagram of the eigen-frequencies, , is used to
find the critical velocities of the two-phase flow for the various pressures (0, 5 and 10), with the
corresponding slip ratios estimated from the Chisholm empirical relations presented in equations (32) to
(36).

Table 5: Summary of the linear two-phase solution of critical flow velocities for varying

pressurization
Parameter Void Critical mixture velocity
Htion Transverse * Axial
2 =0 0.3 12.505 31.634
2 =5 0.3 10.596 31.634
2 =10 0.3 8.237 31.634

* Critical mixture velocity based on Hopf bifurcation of 2" mode
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Considering a supercritical mixture velocity of 15 and book keeping parameter (¢) of 0.1, the nonlinear
frequency amplitude variations and coupled frequency response of the second mode which is the stability
determining mode in the linear sense, is plotted for various pressures.
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Figure 8: Nonlinear frequency —amplitude variations for various pressures
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Figure 9: Nonlinear frequency response for various pressures

It can be seen in Figure 8 that as the pressure increases, the natural frequency increases. A hardening
nonlinear behaviour is observed in the dynamic response of the pipe for all the examined pressures. As
seen in Figure 9, as the detuning parameter is increasing, bifurcation is observed for the various pressures
examined. Also, it can be observed that the increasing the pressure did not create significant changes in
amplitude of the coupled transverse vibration.
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3.1.3 Effects of top tension on the dynamic behaviour

The effect of top tension on a cantilever pipe conveying two-phase flow is studied by considering the
nonlinear response of the cantilever pipe for a situation with no top tension, tensioning value of 5 and
compressing value of 5, with a two-phase flow of void fraction of 0.3. Similar to the single phase flow,
the Argand diagram of the eigen-frequencies, , is used to find the critical velocities of the two-phase flow
for the various tensioning values, the corresponding slip ratios are estimated from the Chisholm empirical
relations presented in equations (32) to (36).

Table 6: Summary of the linear two-phase solution of critical flow velocities for varying top
tensions

Transverse*

12.505 31.634
14.155 31.634
10.596 31.634

* Critical mixture velocity based on Hopf bifurcation of 2" mode

Considering a supercritical mixture velocity of 15 and book keeping parameter (¢) of 0.1, the nonlinear
frequency amplitude variations and coupled frequency response of the second mode which is the stability
determining mode in the linear sense, is plotted for the top tensions.
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Figure 10: Nonlinear frequency —amplitude variations for various top tensions
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Figure 11: Nonlinear frequency response for various top tensions

It can be seen in Figure 10 that the tensioning top load reduces the natural frequency increases while a
compressing top load increases the natural frequency. A hardening nonlinear behaviour is observed in the
dynamic response of the pipe for all the examined cases. As seen in Figure 11, as the detuning parameter
is increasing, bifurcation is observed for the various pressures examined. Also, it can be observed that the
top tensions did not create significant changes in amplitude of the coupled transverse vibration.

3.2 Time History and Phase Plots

Equations (91), (92), (120), and (121) are the first order approximate solutions of the transverse and axial
displacement of the uncoupled and coupled vibration of the pipe. The time trace/history and phase plots
of the 2" mode of the uncoupled and coupled vibrations are studied for various void fractions (0.3, 0.4
and 0.5) considering a post critical flow mixture velocity of 15 and presented in Figures 12 to 23.

The uncoupled response of the transverse vibrations as shown in Figures 12, 16 and 20 for the various
void fractions looks similar, they all shows that the uncoupled transverse vibrations exhibits an oscillation
that converges to a limit cycle with time. With initial amplitudes greater that the amplitudes of the limit
cycles; hence, a positive initial damping is observed and the amplitudes decays until it attains the limit
cycles as shown in the phase plot with a set of concentric circles inside the phase trajectories. Contrary to
this, the uncoupled axial vibration as shown in Figures, 13, 17 and 21 is observed to exhibit uniform
periodic oscillations, which traces out as a closed orbit in the phase plots. The amplitudes of the
displacements are observed to reduce as the void fraction is increasing.

As a result of the coupling between the axial and the transverse vibration, both the coupled transverse and
axial solutions as shown in Figures 14, 15, 18, 19, 22 and 23, exhibits uniform periodic oscillations,
which trace out as a closed orbit in the phase plots. The amplitudes of the coupled displacements are
observed to reduce as the void fraction is increasing.
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Figure 12: Time history and phase plots of uncoupled transverse vibrations of the tip of a cantilever
pipe conveying two-phase flow of void fraction of 0.3
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Figure 13: Time history and phase plots of uncoupled axial vibrations of the tip of a cantilever pipe
conveying two-phase flow of void fraction of 0.3
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Figure 14: Time history and phase plots of coupled transverse vibrations of the tip of a cantilever
pipe conveying two-phase flow of void fraction of 0.3, ¢ of 2.0
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Figure 15: Time history and phase plots of coupled axial vibrations of the tip of a cantilever pipe
conveying two-phase flow of void fraction of 0.3, ¢ of 2.0
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Figure 16: Time history and phase plots of uncoupled transverse vibrations of the tip of a cantilever
pipe conveying two-phase flow of void fraction of 0.4
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Figure 17: Time history and phase plots of uncoupled axial vibrations of the tip of a cantilever pipe
conveying two-phase flow of void fraction of 0.4
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Figure 18: Time history and phase plots of coupled transverse vibrations of the tip of a cantilever
pipe conveying two-phase flow of void fraction of 0.4, ¢ of 2.0
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Figure 19: Time history and phase plots of coupled axial vibrations of the tip of a cantilever pipe
conveying two-phase flow of void fraction of 0.4, ¢ of 2.0
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Figure 20: Time history and phase plots of uncoupled transverse vibrations of the tip of a cantilever
pipe conveying two-phase flow of void fraction of 0.5
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Figure 21: Time history and phase plots of uncoupled axial vibrations of the tip of a cantilever pipe
conveying two-phase flow of void fraction of 0.5
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Figure 22: Time history and phase plots of coupled transverse vibrations of the tip of a cantilever
pipe conveying two-phase flow of void fraction of 0.5, ¢ of 2.0
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Figure 23: Time history and phase plots of uncoupled axial vibrations of the tip of a cantilever pipe
conveying two-phase flow of void fraction of 0.5, ¢ of 2.0
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4  Conclusion

This study examines the dynamic behaviour of a cantilever pipe conveying two-phase flow. Taking into
consideration the extensible theory, nonlinear equations of motion and boundary conditions were obtained
using Hamilton’s principle. The equations were made to be non-dimensional so as to remove the
dependence on geometric and dimensional parameters. Using the method multiple scale perturbation
technique, natural frequencies, mode shapes and first order approximate solutions of the steady state
response of the pipes were obtained. From the analytical assessment, it was observed that a 1:2 coupling
exist between the axial and the transverse vibration of the pipe.

The critical flow mixture velocity for various void fractions were obtained from the Argand diagram plot
of the eigen-frequencies, it was observed that the critical velocities increases as the void fraction
increases. The investigation of the uncoupled nonlinear dynamic behaviour of the pipe as it conveys two-
phase flow at a super critical mixture velocity reveals that the system exhibits a nonlinear hardening
behaviour. As a result of the dynamic analysis, it has been observed that for a two-phase flow, increase in
the void fractions reduces the natural frequency and the coupled amplitude of the system. Also, increase
in temperature difference, increase in pressure and the presence of top tension were observed to increase
the natural frequencies without a significant alteration in the coupled amplitude of the system while
compression load at the top was observed to reduce the natural frequencies which out a significant change
in the coupled amplitude of the system.

APPENDIX

Techniques for completely solving for ax(T1) and ay(T1)
Using Trigonometry identities,

Rsin(y + 0) = Rcos(8)sin(y) + Rsin(0)cos()
R cos(y + 8) = Rcos(8)cos(Y) — Rsin(8)sin(y)
Rsin(y — 0) = Rcos(8)sin(y) — Rsin(0)cos()
R cos(yp — 8) = Rcos(8)cos(Y) + Rsin(8)sin(y) (A1)

Equation (113a) and (113c) can be rewritten as:

0 = R1sin(y1 + 61) (A2)

ax(T1)o = R1cos(y1 + 61) (43)

tan(1) =2, R1 = J (’ZR"‘””)Z)2 + (2 (”)2)2 (A%)
J2R’ 2 2

From;

(sin(¥1 + 61))% + (cos(y1 +61))2 =1 (A5)

ax(T1) = + ’;—122 (46)

35


http://dx.doi.org/10.20944/preprints201710.0030.v1
http://dx.doi.org/10.3390/mca22040044

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 October 2017 d0i:10.20944/preprints201710.0030.v1

From equation (A2) or (A4);
Y1 ==+01 (A7)
Equation (113b) and (113d) can be rewritten as:

K3lay(T1)3

: + ay(Tl)cr _ K4—Iax(T1)a};(T1)cos(1[11) + I(4—Rax(T1)a;r(Tl)sin(1pl) - R2 sin(1,b2 _ 92) (A8)
3 .
K3Raz(T1) _ K4Rax(T1)az(T1)cos(1[)1) _ K4Iax(T1)a}27(T1)51n(z[)1) - R2 COS(lpZ _ 92) (A9)
K5I K5lay(T1)2\? = [(KSRay(T1)2\?
tan(62) ==, R2 = ( ) 4 (R (A10)

From equation (A8) and (A9)

K31ay(T1)? — 2K4lax(T1)cos(y1) + 2K4Rax(T1)sin(y1) + 4o

2 = 62— tan™ [ “K3Ray(T1)? + 2K4Rax(T)cos(p1) + 2Kalax(TDsin(pD) | A
Let
R1
ax(T1) = — CS =cos (Y1), SS = sin(y1) (A12)
From;
(sin(¥2 — 62))% + (cos(y2 — 62))?2 =1 (A13)

Substituting the expressions of R1 and R2 from equations (A4) and (A10) respectively, a quartic equation
in terms of ay(T1) is obtained as:

A.ay(TD* +B.ay(T1)? +C =0 (A14)

Where:

A= 02K31? + 02K3R? + CS?J212K412 + CS2J212K4R? + CS?]J2R2K412? + CS2J2R2KAR? + J212K412SS? +
]212K4-RZSS2 + IZRZKAHZSS2 + ]2R2K4-RZSS2 — 2CS.0.K31.K41,/]J2I? + J2R? — 2CS. 0. K3R. K4R,/]21? + J2R? +
2 0.K31.K4R.SS/]J212 + J2R2 — 2 0. K41. K3R. SS,/] 212 + J2R?

B= —[4 02K512 + 4 62K5R? — 8 03K31 + 8CS. 02. K4L/J2I% + J2RZ — 8 ¢2.K4R.SS.0,/]212 + ]2R2]

C=160*
The solution of the quartic equation (A14) will produce four roots of ay(T1):

ay(T1) = i\]— (8- B;l_ 440) or ay(T1) = i\]— (B+ B2f4_ 440) (131)

However, the acceptable solution for ay(T1) is the root of the quartic equation (115) that is real and
positive [25-27].
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