Review
Version 1
Preserved in Portico This version is not peer-reviewed
Advances in Fluorescent Single-Chain Nanoparticles
Version 1
: Received: 29 September 2017 / Approved: 29 September 2017 / Online: 29 September 2017 (18:36:01 CEST)
A peer-reviewed article of this Preprint also exists.
De-La-Cuesta, J.; González, E.; Pomposo, J.A. Advances in Fluorescent Single-Chain Nanoparticles. Molecules 2017, 22, 1819. De-La-Cuesta, J.; González, E.; Pomposo, J.A. Advances in Fluorescent Single-Chain Nanoparticles. Molecules 2017, 22, 1819.
Abstract
Fluorophore molecules can be monitored by fluorescence spectroscopy and microscopy which are highly useful and widely used techniques in cell biology, biochemistry and medicine (e.g., biomarker analysis, immunoassays, cancer diagnosis). Several fluorescent micro- and nanoparticle systems based on block copolymer micelles and cross-linked polymer networks, quantum dots, -conjugated polymers, and dendrimers have been evaluated as optical imaging systems. In this review, we highlight recent advances in the construction of fluorescent single-chain nanoparticles (SCNPs) which are valuable artificial soft nano-objects with tunable, small size (as small as 3 nm). In particular, the main methods currently available to endow SCNPs with fluorescent properties are discussed in detail, showing illustrative examples.
Keywords
Nanoparticles; fluorescence; optical imaging
Subject
Chemistry and Materials Science, Polymers and Plastics
Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Comments (0)
We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.
Leave a public commentSend a private comment to the author(s)