Preprint Article Version 1 This version is not peer-reviewed

Airflow sensitivity assessment based on the underground mine ventilation systems modeling

Version 1 : Received: 17 July 2017 / Approved: 18 July 2017 / Online: 18 July 2017 (12:27:46 CEST)

A peer-reviewed article of this Preprint also exists.

Dziurzyński, W.; Krach, A.; Pałka, T. Airflow Sensitivity Assessment Based on Underground Mine Ventilation Systems Modeling. Energies 2017, 10, 1451. Dziurzyński, W.; Krach, A.; Pałka, T. Airflow Sensitivity Assessment Based on Underground Mine Ventilation Systems Modeling. Energies 2017, 10, 1451.

Journal reference: Energies 2017, 10, 1451
DOI: 10.3390/en10101451

Abstract

This paper presents a methodology for determining the sensitivity of the main air flow directions in ventilation subnetworks to changes of aerodynamic resistance and of air density in mine workings. Formulae for determination of the sensitivity of the main subnetwork air flows by establishing the degree of dependency of the air volume stream in a given working on the variations in resistance or air density of other workings of the network have been developed. They have been implemented in the VentGraph mine ventilation network simulator. This software, widely used in Polish collieries provides an extended possibility to predict the process of ventilation, air distribution and, in the case of underground fire, also the spread of combustion gasses. The new method facilitates assessment by mine ventilation services of the stability of ventilation systems in exploitation areas and determine of the sensitivity of the main subnetwork air flow directions to changes of aerodynamic resistance and air density. Recently in some Polish collieries new longwalls are developed in seams located deeper then the bottom of the intake shaft. Such solution is called “exploitation below the level of access” or “sublevel”. The new approach may be applied to such developments to assess the potential of changes of direction and air flow rates. In addition, interpretation of the developed sensitivity indicator is presented. While analyzing air distributions for sublevel exploitation, application of current numerical models for calculations of the distribution results in tangible benefits, such as the evaluation of the safety or risk levels for such exploitation. Application of the VentGraph computer program, and particularly the module POŻAR (fire) with the newly developed options, enables an additional approach to the sensitivity indicator in evaluating air flow safety levels for the risks present during exploitation below the level of the intake shaft. The analyses performed and examples presented enabled useful conclusions in mining practice to be drawn.

Subject Areas

ventilation process prediction; safety of mine ventilation system; sensitivity of the main air flows in ventilation subnetworks

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.