Preprint
Article

Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles

This version is not peer-reviewed.

Submitted:

15 May 2017

Posted:

16 May 2017

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
This paper presents a thermal runaway prognosis scheme based on the big-data platform and entropy method for battery systems in electric vehicles. It can simultaneously realize the diagnosis and prognosis of thermal runaway caused by the temperature fault through monitoring battery temperature during vehicular operations. A vast quantity of real-time voltage monitoring data was collected in the National Service and Management Center for Electric Vehicles (NSMC-EV) in Beijing to verify the effectiveness of the presented method. The results show that the proposed method can accurately forecast both the time and location of the temperature fault within battery packs. Furthermore, a temperature security management strategy for thermal runaway is proposed on the basis of the Z-score approach and the abnormity coefficient is set to make real-time precaution of temperature abnormity.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

1634

Views

879

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated