Preprint
Article

This version is not peer-reviewed.

Higher Ocean Wind Speeds During Marine Cold Air Outbreaks

A peer-reviewed article of this preprint also exists.

Submitted:

02 May 2017

Posted:

02 May 2017

You are already at the latest version

Abstract
Marine cold air outbreaks (MCAOs) are large-scale events in which cold air masses are advected over open ocean. It is well-known that these events are linked to the formation of polar lows and other mesoscale phenomena associated with high wind speeds, and that they therefore in some cases represent a hazard to maritime activities. However, it is still unknown whether MCAOs are generally conducive to higher wind speeds than normal. Here this is investigated by comparing ocean near-surface wind speeds during MCAOs in atmospheric reanalysis products with different horizontal grid spacings, along with two case studies using a convection-permitting numerical weather prediction model. The study regions are the Labrador Sea and the Greenland–Iceland–Norwegian (GIN) Seas, where MCAOs have been shown to be important for air–sea interaction and deep water formation. One of the main findings is that wind speeds during the strongest MCAO events are higher than normal and higher than wind speeds during less severe events. Limited evidence from the case studies suggests that reanalyses with grid spacings of more than 50 km underestimate winds driven by the large ocean–atmosphere energy fluxes during MCAOs. The peak times of MCAO usually occur when baroclinic waves pass over the regions. Therefore, the strong wind episodes during MCAOs generally last for just a few days. However, MCAOs can persist for 50 days or more.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated