Preprint
Article

This version is not peer-reviewed.

Electromagnetic Performances Evaluation of an Outer-Rotor Flux-Switching Permanent Magnet Motor Based on Electrical-Thermal Two-Way Coupling Method

A peer-reviewed article of this preprint also exists.

Submitted:

04 April 2017

Posted:

04 April 2017

You are already at the latest version

Abstract
Flux-switching permanent magnet (FSPM) motors have gained increasing attention in the electric vehicles (EVs) applications due to the advantages of high power density, high efficiency. However, the heat sources of both permanent magnet (PM) and armature winding are located on the limited stator space in the FSPM motors, which may result in the PM overheated and irreversible demagnetization caused by temperature rise and it is often ignored in the conventional thermal analysis. In this paper, a new electrical-thermal two-way coupling design method is proposed to analyze the electromagnetic performances, where the change of PM material characteristics under different temperatures is taken into consideration. Firstly, the motor topology and design equations are introduced. Secondly, the demagnetization curves of PM materials under different temperatures are modeled due to PM materials are sensitive to the temperature. And based on the electrical-thermal two-way coupling method, the motor performances are evaluated in details, such as the load PM flux linkage and output torque. Then, the motor is optimized, and the electromagnetic performances between initial and improved motors are compared. Finally, a prototype motor is manufactured, and the results are validated by experimental measurements.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated