Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Changes of Reference Evapotranspiration and Its Relationships to Dry/Wet Conditions Based on Aridity Index in Songnen Grassland, Northeast China

Version 1 : Received: 22 February 2017 / Approved: 22 February 2017 / Online: 22 February 2017 (16:46:01 CET)

A peer-reviewed article of this Preprint also exists.

Ma, Q.; Zhang, J.; Sun, C.; Guo, E.; Zhang, F.; Wang, M. Changes of Reference Evapotranspiration and Its Relationship to Dry/Wet Conditions Based on the Aridity Index in the Songnen Grassland, Northeast China. Water 2017, 9, 316. Ma, Q.; Zhang, J.; Sun, C.; Guo, E.; Zhang, F.; Wang, M. Changes of Reference Evapotranspiration and Its Relationship to Dry/Wet Conditions Based on the Aridity Index in the Songnen Grassland, Northeast China. Water 2017, 9, 316.

Abstract

Reference evapotranspiration (ET0) plays an irreplaceable role in regional dry/wet conditions under the background of climate change. Based on the FAO Penman-Monteith method and daily climate variables, ET0 was calculated for 22 stations in and around Songnen Grassland, northeast China, during 1960-2014. The temporal and spatial variations of ET0 and precipitation (P) were comprehensively analyzed at different time scales by using the Mann-Kendall test, Sen’s slope estimator, and linear regression coupling with break trend analysis. Sensitivity analysis was used to detect the key climate parameter attributed to ET0 change. Then, the role of ET0 in regional dry/wet conditions was discussed by analyzing the relationship between ET0, P and aridity index (AI). Results shown a higher ET0 in the southwest and a lower in the northeast, but P was opposite to that of ET0. Evidently decreasing trend of ET0 at different time scales was detected in almost the entire region, and the significant trend mainly distributed in the eastern, northeastern and central. For the whole region, sensitivity analysis indicated decreasing trend of ET0 was primarily attributed to relative humidity and maximum air temperature. The positive contribution of increasing temperature rising to ET0 was offset by the effect of significantly decreasing relative humidity, wind speed and sunshine duration. In addition, the value of ET0 shown higher in drought years and lower in wet years.

Keywords

reference evapotranspiration; climatic change; drought/wet; Songnen Grassland

Subject

Environmental and Earth Sciences, Atmospheric Science and Meteorology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.