Preprint
Article

This version is not peer-reviewed.

Exponential and Polynomial Decay for a Laminated Beam with Fourier's Type Heat Conduction

Submitted:

28 January 2019

Posted:

28 January 2019

You are already at the latest version

Abstract
In this paper, we study the well-posedness and asymptotics of a one-dimensional thermoelastic laminated beam system either with or without structural damping, where the heat conduction is given by Fourier's law effective in the rotation angle displacements. We show that the system is well-posed by using Lumer-Philips theorem, and prove that the system is exponentially stable if and only if the wave speeds are equal, by using the perturbed energy method and Gearhart-Herbst-Prüss-Huang theorem. Furthermore, we show that the system with structural damping is polynomially stable provided that the wave speeds are not equal, by using the second-order energy method.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated