Preprint
Article

Exponential and Polynomial Decay for a Laminated Beam with Fourier's Type Heat Conduction

This version is not peer-reviewed.

Submitted:

16 February 2017

Posted:

16 February 2017

Read the latest preprint version here

Abstract
In this paper, we study the well-posedness and the asymptotic behavior of a one-dimensional laminated beam system, where the heat conduction is given by Fourier's law effective in the rotation angle displacements. We show that the system is well-posed by using the Hille-Yosida theorem and prove that the system is exponentially stable if and only if the wave speeds are equal. Furthermore, we show that the system is polynomially stable provided that the wave speeds are not equal.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

1524

Views

1700

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated