Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries

Version 1 : Received: 17 January 2017 / Approved: 18 January 2017 / Online: 18 January 2017 (09:48:30 CET)

A peer-reviewed article of this Preprint also exists.

Zhang, X.; Wang, J.-G.; Liu, H.; Liu, H.; Wei, B. Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries. Materials 2017, 10, 77. Zhang, X.; Wang, J.-G.; Liu, H.; Liu, H.; Wei, B. Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries. Materials 2017, 10, 77.

Abstract

Three-dimensional V2O5 hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V2O5 materials are composed of microspheres 2–3 μm in diameter and with a distinct hollow interior. The as-synthesized V2O5 hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g−1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V2O5 cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V2O5 hollow material as a high-performance cathode for lithium-ion batteries.

Keywords

vanadium pentoxide; lithium-ion batteries; hollow spheres; cathode

Subject

Chemistry and Materials Science, Nanotechnology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.