Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

The RUNE Experiment–A Database of Remote-Sensing Observations of Near-Shore Winds

Version 1 : Received: 17 October 2016 / Approved: 18 October 2016 / Online: 18 October 2016 (07:51:46 CEST)

A peer-reviewed article of this Preprint also exists.

Floors, R.; Peña, A.; Lea, G.; Vasiljević, N.; Simon, E.; Courtney, M. The RUNE Experiment—A Database of Remote-Sensing Observations of Near-Shore Winds. Remote Sens. 2016, 8, 884. Floors, R.; Peña, A.; Lea, G.; Vasiljević, N.; Simon, E.; Courtney, M. The RUNE Experiment—A Database of Remote-Sensing Observations of Near-Shore Winds. Remote Sens. 2016, 8, 884.

Abstract

We present a comprehensive database of near-shore wind observations that were carried out during the experimental campaign of the RUNE project. RUNE aims at reducing the uncertainty of the near-shore wind resource estimates from model outputs by using lidar, ocean, and satellite observations. Here we concentrate in describing the lidar measurements. The campaign was conducted from November 2015 to February 2016 at the west coast of Denmark and comprises measurements from eight lidars, an ocean buoy and three types of satellites. The wind speed was estimated based on measurements from a scanning lidar performing PPIs, two scanning lidars performing dual synchronized scans, and five vertical profiling lidars, of which one was operating offshore on a floating platform. The availability of measurements is highest for the profiling lidars, followed by the lidar performing PPIs, those peforming the dual setup, and the lidar buoy. Analysis of the lidar measurements reveals good agreement between the estimated 10-m wind speeds, although the instruments used different scanning strategies and measured different volumes in the atmosphere. The campaign is characterized by strong westerlies with occasional storms.

Keywords

coastal; experiment; lidar; near-shore; offshore; wind resources

Subject

Environmental and Earth Sciences, Atmospheric Science and Meteorology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.