Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Study on Insulator Flashover Voltage Gradient Correction Considering Soluble Pollution Constituents

Version 1 : Received: 12 September 2016 / Approved: 12 September 2016 / Online: 12 September 2016 (10:47:42 CEST)

A peer-reviewed article of this Preprint also exists.

Zhang, D.; Zhang, Z.; Jiang, X.; Yang, Z.; Zhao, J.; Li, Y. Study on Insulator Flashover Voltage Gradient Correction Considering Soluble Pollution Constituents. Energies 2016, 9, 954. Zhang, D.; Zhang, Z.; Jiang, X.; Yang, Z.; Zhao, J.; Li, Y. Study on Insulator Flashover Voltage Gradient Correction Considering Soluble Pollution Constituents. Energies 2016, 9, 954.

Abstract

Natural polluted insulator surfaces are always coated with various kinds of soluble constituents, and those constituents affect flashover performance differentially. Currently this fact is not considered either in laboratory experiments or field pollution degree measurements, causing the existing insulation selection method to be deficient. In this paper a systematical research on insulator flashover voltage gradient correction involving types of soluble pollution constituents was presented. Taking typical type glass insulator as the sample, its flashover tests polluted by typical soluble chemicals NaCl, NaNO3, KNO3, NH4NO3, MgSO4, Ca(NO3)2 and CaSO4 were carried out. Then the flashover gradient correction was made combining the flashover performance of each soluble constituent, the ESDD contribution of the seven constituents, as well as the saturation performance of CaSO4. The correction was well verified with the flashover test results of insulator polluted by three types of soluble mixture. Research results indicate that the flashover gradient correction method proposed by this paper performs well in reducing the calculating error. It is recommended to carry out component measurements and flashover gradient correction to better select outdoor insulation configuration.

Keywords

insulator; pollution flashover; equivalent salt deposit density (ESDD); soluble constituent; flashover voltage gradient

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.