Emergency evacuation in complex and dynamic building environments requires robust and adaptive routing strategies capable of responding to evolving hazards, blocked passages, and changing crowd behaviour. Most existing evacuation planners rely on static geometric representations and lack semantic awareness of the environment, limiting their ability to perform informed re-planning and backtracking when routes become unsafe. This paper proposes a neuro-symbolic evacuation planning framework that integrates Lifelong Planning A* (LPA*) with ontology-driven semantic reasoning and a Bidirectional Long Short-Term Memory (BiLSTM) prediction model. The building’s spatial and semantic knowledge is represented using the Web Ontology Language (OWL) and Resource Description Framework (RDF), enabling automated inference of implicit connections and enforcement of safety policies. The BiLSTM model learns temporal patterns from ontology-consistent evacuation trajectories and provides guidance for remaining-cost estimation and early prediction of routes likely to require backtracking, which is combined with a bounded semantic heuristic to preserve admissibility and optimality guarantees. Simulation results in a multi-floor academic building show that the proposed BiLSTM-guided semantic LPA* framework reduces average evacuation time by up to 9.6%, decreases node expansions by up to 32%, and increases evacuation success rates to 96.2% compared with a purely semantic baseline. The BiLSTM model also achieves strong predictive performance, with a test AUC of 0.92 for backtracking prediction and a next-state accuracy of 87.1%. The proposed framework provides a scalable, explainable, and real-time solution for personalised and policy-compliant evacuation guidance under rapidly evolving emergency conditions.