Submitted:
11 February 2026
Posted:
11 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. The Antibiotic Discovery Crisis
1.2. The Signaling-First Hypothesis
1.3. An Untested Prediction
1.4. Objectives
2. Methods
2.1. AI-assisted Workflow
2.2. Dataset Construction
2.3. Drug-Likeness Filters
2.4. ADMET Predictions
2.5. PAINS Screening
2.6. Statistical Analysis
3. Results
3.1. Part 1: Three-Group Comparison Reveals Specificity of Drug-Likeness Enrichment
3.1.1. Property Distributions
3.1.2. Drug-Likeness Filter Enrichment: Three-Group Comparison
3.1.3. Chemical Space Mapping
3.1.4. Predicted ADMET Properties
3.2. Part 2: Candidate Identification
4. Discussion
4.1. Drug-Likeness Enrichment Is Specific to Small-Molecule Diffusible Signals
4.2. The Testing Gap and Dose-Escalation Rationale
4.3. Biological Considerations
4.4. Limitations
4.5. Recommended Validation Pathway
5. Conclusions
Supplementary Materials
Author Contributions
Funding
AI Declaration
Conflicts of Interest
Glossary of Abbreviations and Acronyms
| Abbreviation | Full Term |
| ADMET | Absorption, Distribution, Metabolism, Excretion, and Toxicity |
| AHL | N-Acyl Homoserine Lactone |
| AI-2 | Autoinducer-2 |
| AIP | Autoinducing Peptide |
| AMR | Antimicrobial Resistance |
| BBB | Blood–Brain Barrier |
| BDSF | Burkholderia Diffusible Signal Factor (cis-2-Dodecenoic Acid) |
| CAI-1 | Cholera Autoinducer-1 |
| cAMP | Cyclic Adenosine Monophosphate |
| CDSF | cis,cis-11-Methyldodeca-2,5-dienoic Acid |
| c-di-AMP | Cyclic di-Adenosine Monophosphate |
| c-di-GMP | Cyclic di-Guanosine Monophosphate |
| CI | Confidence Interval |
| CNS | Central Nervous System |
| CSP | Competence-Stimulating Peptide |
| Da | Dalton |
| DPD | (4S)-4,5-Dihydroxy-2,3-pentanedione |
| DSF | Diffusible Signal Factor |
| EC50 | Half-Maximal Effective Concentration |
| EF | Enrichment Factor |
| ESKAPE | Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species |
| FDA | U.S. Food and Drug Administration |
| GBAP | Gelatinase Biosynthesis-Activating Pheromone |
| HBA | Hydrogen Bond Acceptors |
| HBD | Hydrogen Bond Donors |
| HHQ | 4-Hydroxy-2-Heptylquinoline |
| HQNO | 4-Hydroxy-2-Heptylquinoline N-oxide |
| HSL | Homoserine Lactone |
| LogP | Logarithm of Octanol/Water Partition Coefficient |
| MIC | Minimum Inhibitory Concentration |
| MR | Molar Refractivity |
| MW | Molecular Weight |
| NF-κB | Nuclear Factor Kappa-light-chain-enhancer of Activated B Cells |
| NHQ | 2-Nonyl-4-Hydroxyquinoline |
| ns | Not Significant |
| OR | Odds Ratio |
| PAINS | Pan Assay Interference Compounds |
| ppGpp | Guanosine Tetraphosphate |
| pppGpp | Guanosine Pentaphosphate |
| PQS | Pseudomonas Quinolone Signal |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| QS | Quorum Sensing |
| RND | Resistance-Nodulation-Division |
| Ro5 | Rule of Five |
| SHP | Short Hydrophobic Peptide |
| TDA | Tropodithietic Acid |
| TPSA | Topological Polar Surface Area |
| VB-A | Virginiae Butanolide A |
References
- Amer, A.N. et al. (2025). Growth-phase-dependent modulation of quorum sensing and virulence factors in Pseudomonas aeruginosa ATCC 27853 by sub-MICs of antibiotics. Antibiotics 14, 4. [CrossRef]
- Andersson, D.I. & Hughes, D. (2014). Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 12, 465–478. [CrossRef]
- Baell, J.B. & Holloway, G.A. (2010). New substructure filters for removal of pan assay interference compounds (PAINS). J. Med. Chem. 53, 2719–2740. [CrossRef]
- Beyersmann, P.G. et al. (2017). Dual function of tropodithietic acid as antibiotic and signaling molecule in global gene regulation of the probiotic bacterium Phaeobacter inhibens. Sci. Rep. 7, 730. [CrossRef]
- Brown, E.D. & Wright, G.D. (2016). Antibacterial drug discovery in the resistance era. Nature 529, 336–343. [CrossRef]
- Davies, J. & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433. [CrossRef]
- Egan, W.J., Merz, K.M. & Baldwin, J.J. (2000). Prediction of drug absorption using multivariate statistics. J. Med. Chem. 43, 3867–3877. [CrossRef]
- Fajardo, A. & Martínez, J.L. (2008). Antibiotics as signals that trigger specific bacterial responses. Curr. Opin. Microbiol. 11, 161–167. [CrossRef]
- Feltner, J.B. et al. (2016). LasR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in Pseudomonas aeruginosa. mBio 7, e01513-16. [CrossRef]
- Ghose, A.K. et al. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries. J. Comb. Chem. 1, 55–68. [CrossRef]
- Hoffman, L.R. et al. (2005). Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436, 1171–1175. [CrossRef]
- Koberska, M. et al. (2021). Beyond self-resistance: ABCF ATPase LmrC is a signal-transducing component of an antibiotic-driven signaling cascade accelerating the onset of lincomycin biosynthesis. mBio 12, e01731-21. [CrossRef]
- Kravchenko, V.V. et al. (2008). Modulation of gene expression via disruption of NF-κB signaling by a bacterial small molecule. Science 321, 259–263. [CrossRef]
- Linares, J.F. et al. (2006). Antibiotics as intermicrobial signaling agents instead of weapons. Proc. Natl. Acad. Sci. U.S.A. 103, 19484–19489. [CrossRef]
- Lipinski, C.A. et al. (2001). Experimental and computational approaches to estimate solubility and permeability. Adv. Drug Deliv. Rev. 46, 3–26. [CrossRef]
- Matilla, M.A. et al. (2018). An auxin controls bacterial antibiotics production. Nucleic Acids Res. 46, 11229–11238. [CrossRef]
- Milli, G. et al. (2024). New LsrK ligands as AI-2 quorum sensing interfering compounds against biofilm formation. J. Med. Chem. 67, 18139–18156. [CrossRef]
- Muegge, I. et al. (2001). Simple selection criteria for drug-like chemical matter. J. Med. Chem. 44, 1841–1846. [CrossRef]
- Nelson, K.M. et al. (2017). The essential medicinal chemistry of curcumin. J. Med. Chem. 60, 1620–1637. [CrossRef]
- O’Shea, R. & Moser, H.E. (2008). Physicochemical properties of antibacterial compounds. J. Med. Chem. 51, 2871–2878. [CrossRef]
- Romero, D. et al. (2011). Antibiotics as signal molecules. Chem. Rev. 111, 5492–5505. [CrossRef]
- Salama, G.G. et al. (2024). Downregulation of Klebsiella pneumoniae RND efflux pump genes following indole signal produced by Escherichia coli. BMC Microbiol. 24, 312. [CrossRef]
- Tateda, K. et al. (2003). The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect. Immun. 71, 5785–5793. [CrossRef]
- Veber, D.F. et al. (2002). Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623. [CrossRef]
- Whiteley, M. et al. (2017). Progress in and promise of bacterial quorum sensing research. Nature 551, 313–320. [CrossRef]
- Williams, C.C. et al. (2024). Signaling molecules in Pseudomonas aeruginosa response to antibiotics at sub-inhibitory concentrations. Asian J. Biotechnol. Bioresour. Technol. 10, 19–33. [CrossRef]



| Property | Signaling (median) |
Random (median) |
p-value | Bonferroni p | r |
|---|---|---|---|---|---|
| Molecular Weight (Da) | 225.8 | 379.5 | 9.26 × 10⁻¹¹ | 5.56 × 10⁻¹⁰ *** | 0.702 |
| LogP | 2.10 | 2.70 | 0.142 | 0.853 ns | 0.159 |
| H-Bond Acceptors | 3.0 | 5.0 | 5.17 × 10⁻⁷ | 3.10 × 10⁻⁶ *** | 0.539 |
| H-Bond Donors | 1.0 | 2.0 | 0.015 | 0.090 ns | 0.248 |
| TPSA (Ų) | 55.8 | 81.7 | 7.40 × 10⁻⁵ | 4.44 × 10⁻⁴ *** | 0.430 |
| Rotatable Bonds | 5.5 | 6.0 | 0.418 | 1.000 ns | 0.088 |
| Filter | Small-Mol. (n=48) |
Pept./Intra. (n=17) |
Random (n=71) |
EF | Fisher’s p | Bonf. p |
|---|---|---|---|---|---|---|
| Lipinski Ro5 (strict) |
95.8% (46/48) |
5.9% (1/17) |
73.2% (52/71) |
1.31 | 0.001 | 0.009 ** |
| Lipinski Ro5 (≤1 viol.) |
97.9% (47/48) |
11.8% (2/17) |
83.1% (59/71) |
1.18 | 0.014 | 0.099 ns |
| Veber Criteria |
89.6% (43/48) |
0.0% (0/17) |
80.3% (57/71) |
1.12 | 0.209 | 1.000 ns |
| O’Shea Abx | 97.9% (47/48) |
0.0% (0/17) |
78.9% (56/71) |
1.24 | 0.002 | 0.016 * |
| Ghose Filter | 81.2% (39/48) |
0.0% (0/17) |
63.4% (45/71) |
1.28 | 0.042 | 0.292 ns |
| Egan Filter | 97.9% (47/48) |
0.0% (0/17) |
74.6% (53/71) |
1.31 | < 0.001 | 0.004 ** |
| Muegge Filter |
56.2% (27/48) |
0.0% (0/17) |
63.4% (45/71) |
0.89 | 0.451 | 1.000 ns |
| Good | Moderate | Poor | |
|---|---|---|---|
| Small-Mol. Signaling (n = 48) | 72.9% (35/48) | 25.0% (12/48) | 2.1% (1/48) |
| Peptide/Intracellular (n = 17) | 0.0% (0/17) | 0.0% (0/17) | 100.0% (17/17) |
| Random Drug-Like (n = 71) | 32.4% (23/71) | 46.5% (33/71) | 21.1% (15/71) |
| Molecule | Category | MW | LogP | Score | Testing Gap | PAINS |
|---|---|---|---|---|---|---|
| Savirin (M64) | Antivirulence | 302.4 | 3.75 | 6/6 | MIC not reported | None |
| LED209 | Antivirulence | 338.4 | 2.80 | 6/6 | Designed non-bactericidal | None |
| LsrK inhib. 11e | AI-2 Modulator | 320.0 | 2.10 | 6/6 | Untested (Milli et al., 2024) | None |
| 3-oxo-C12-HSL | QS Autoinducer | 297.4 | 2.44 | 5/6 | Untested at MIC range | None |
| Hordenine | QS Modulator | 165.2 | 1.21 | 5/6 | Untested at high conc. | None |
| Indole-3-acetic acid | Interspecies | 175.2 | 1.06 | 5/6 | Untested as antibiotic | None |
| Virstatin | Antivirulence | 286.3 | 3.95 | 6/6 | Unexplored at high conc. | Acridone — monitor |
| mBTL | QS Inhibitor | 257.1 | 2.55 | 6/6 | MIC not published | Thiolactone — reactive |
| Furanone C-30 | QS Modulator | 243.5 | 2.30 | 6/6 | Not tested | Michael acceptor |
| C4-HSL | QS Autoinducer | 171.2 | 0.38 | 5/6 | Untested as antibiotic | Lactone — labile |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
