Submitted:
07 February 2026
Posted:
09 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. System Overview

2.1. Design Principle
2.2. System Architecture

2.2.1. Front-facing Features: Conversation Model
2.2.2. Remote Database
2.2.3. Admin Panel: Management of Complaints Data
- Content Management: Administrators can add, edit, or delete complaint categories and solutions via an admin panel. This allows the system to be updated with new complaint types or modified responses, ensuring adaptability to evolving user needs.
- Approval Workflow: Changes made by content managers require approval by a higher authority before they go live. This ensures quality control and consistency.
2.2.4. Voice Integration


3. Related Work
4. Conclusions
References
- Weizenbaum, J. ELIZA—a computer program for the study of natural language communication between man and machine. Communications of the ACM 1966, 9, 36–45. [Google Scholar] [CrossRef]
- Tur, G.; De Mori, R. Spoken language understanding: Systems for extracting semantic information from speech; John Wiley & Sons, 2011. [Google Scholar]
- Kumar, N.; Ajmera, P. K.; Alam, S. S. Local language voice interfaces for digital inclusion in South Asia. Proc. ICTD, 2019; pp. 1–10. [Google Scholar]
- Chowdhury, S. A.; Hossain, M. A.; Shahriar, R. Designing low-bandwidth AI assistants for rural Bangladesh. IEEE Access 2020, 8, 123456–123467. [Google Scholar]
- Singh, R.; Kumar, A. AI chatbot for electricity billing queries in India: A case study. International Journal of Computer Applications 2020, 176, 1–6. [Google Scholar] [CrossRef]
- Kipchirchir, M. W. Utility chatbots in Kenya: Improving customer service in the energy sector. African Journal of Science and Technology 2021, 15, 45–58. [Google Scholar]
- Lee, J. D.; See, K. A. Trust in automation: Designing for appropriate reliance. Human Factors 2004, 46, 50–80. [Google Scholar] [CrossRef]
- Smith, B.; Doe, J.; Lee, C. Hybrid human-AI customer service: Models and challenges. ACM Transactions on Interactive Intelligent Systems 2020, 10, 1–25. [Google Scholar]
- Brown, T.; et al. Language models are few-shot learners. Advances in Neural Information Processing Systems 2020, 33, 1877–1901. [Google Scholar]
- Lewis, M.; et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems 2020, 33, 9459–9474. [Google Scholar]
- Zakaria, K. M.; Rahman, F. Digital Bangladesh: Progress and challenges in public service digitization. Government Information Quarterly 2021, 38, 101567. [Google Scholar]
- Bangladesh Government. Bangla Speech API Documentation. 2023. Available online: https://voice.bangla.gov.bd/docs.
- Islam, M. R.; Sultana, S.; Ahmed, T. A survey of AI applications in Bangladeshi public utilities. Journal of AI Research in Developing Countries 2022, 4, 22–35. [Google Scholar]
- Plummer, B. A.; et al. Context-aware embeddings for automatic captioning. Proc. ICCV, 2017; pp. 4551–4560. [Google Scholar]
- Vaswani, et al. Attention is all you need. Advances in Neural Information Processing Systems 2017, 30. [Google Scholar]
- Adiwardana, D.; et al. Towards a human-like open-domain chatbot. arXiv 2020, arXiv:2001.09977. [Google Scholar]
- Roller, S.; et al. Recipes for building an open-domain chatbot. arXiv 2020, arXiv:2004.13637. [Google Scholar] [CrossRef]
- Manning, C. D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press, 2008. [Google Scholar]
- Liu, Y.; et al. Roberta: A robustly optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692. [Google Scholar]
- Tang, J. C. Approaches to designing effective human-AI interaction. Foundations and Trends® in Human–Computer Interaction 2021, 14, 181–295. [Google Scholar]
- Liang, P.; et al. Holistic evaluation of language models. arXiv 2022, arXiv:2211.09110. [Google Scholar] [CrossRef]
- Ekstrand, M. D.; et al. Fairness and discrimination in information access systems. arXiv 2021, arXiv:2105.05779. [Google Scholar]
- Gajos, K. Z.; Weld, D. S. Designing adaptive interfaces through utility optimization. Proc. CHI, 2004; pp. 1347–1356. [Google Scholar]
- Khan, S. S. R.; Abidi, C. K. K.; Al-Mourad. Plug-and-play AI systems for scalable digital services. IEEE Transactions on Services Computing 2021, 14, 1234–1245. [Google Scholar]
- Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Communications of the ACM 2008, 51, 107–113. [Google Scholar] [CrossRef]
- Rashkin, H.; et al. Towards empathetic open-domain conversation models: A new benchmark and dataset. arXiv 2018, arXiv:1811.00207. [Google Scholar]
- Stefik, M.; et al. Beyond the laboratory: Field studies in HCI. In Handbook of Human-Computer Interaction; Elsevier, 1997; pp. 805–826. [Google Scholar]
- Chin, J. P.; Diehl, V. A.; Norman, K. L. Development of an instrument measuring user satisfaction of the human-computer interface. Proc. CHI, 1988; pp. 213–218. [Google Scholar]
- Card, S. K.; Moran, T. P.; Newell, A. The psychology of human-computer interaction; CRC Press, 1983. [Google Scholar]
- Zhou, L.; et al. Multimodal transformers for conversational AI. Proc. EMNLP, 2021; pp. 5506–5518. [Google Scholar]
- Pu, P.; Chen, L. Trust building with explanation interfaces. Proc. IUI, 2006; pp. 93–100. [Google Scholar]
- Berg, R. V. D.; et al. Extending conversational agents to manage multi-utility customer service. Energy Informatics 2022, 5, 12. [Google Scholar]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
