Submitted:
06 February 2026
Posted:
09 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Related Work
2.1. Recommendation Systems and AI Techniques
2.2. Multimodal Transportation and Route Planning
3. Methodology
3.1. Approach Followed and System Developed
3.2. Route Planning
3.3. Recommendation Engine
3.4. LLM-enabled User Interface
4. Example of Usage and Discussion
4.1. Route Planning Algorithm Demonstration
4.2. Recommendations Based on User’s Preferences
4.3. JSON-Schema Driven Data Extraction
5. Study System Behaviour Using Simulated Data
5.1. Simulated Data Generation
5.2. Data Analysis and Discussion
5.3. ML Development and Evaluation
6. Further Discussion and Future Directions
6.1. Strengths and Limitations of the System
6.2. Sustainable Transportation and Urban Infrastructure
7. Conclusion
Author Contributions
Funding
Conflicts of Interest
Appendix A: Data Management

Appendix B: Points of Interest and System Libraries

References
- Liao, F., & Correia, G. (2022). Electric carsharing and micromobility: A literature review on their usage pattern, demand, and potential impacts. International Journal of Sustainable Transportation, 16(3), 269-286. [CrossRef]
- Vargas-Munoz, J. E., Srivastava, S., Tuia, D., & Falcao, A. X. (2020). OpenStreetMap: Challenges and opportunities in machine learning and remote sensing. IEEE Geoscience and Remote Sensing Magazine, 9(1), 184-199. [CrossRef]
- Yang, A., Li, A., Yang, B., Zhang, B., Hui, B., Zheng, B., ... & Qiu, Z. (2025). Qwen3 technical report. arXiv preprint arXiv:2505.09388.
- Ko, H., Lee, S., Park, Y., & Choi, A. (2022). A survey of recommendation systems: recommendation models, techniques, and application fields. Electronics, 11(1), 141. [CrossRef]
- Burke, R. (2007). Hybrid web recommender systems. The adaptive web: methods and strategies of web personalization, 377-408.
- Adomavicius, G., & Tuzhilin, A. (2010). Context-aware recommender systems. In Recommender systems handbook (pp. 217-253). Boston, MA: Springer US.
- Zhang, Q., Lu, J., & Jin, Y. (2021). Artificial intelligence in recommender systems. Complex & intelligent systems, 7(1), 439-457.
- Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern recognition letters, 31(8), 651-666.
- Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30-37. [CrossRef]
- McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data. The management revolution. Harvard Bus Rev, 90(10), 61-67.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
- Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press.
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
- Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM computing surveys (CSUR), 52(1), 1-38.
- Xu, J., Chen, Z., Yang, S., Li, J., Wang, W., Hu, X., ... & Ngai, E. (2025). A Survey on Multimodal Recommender Systems: Recent Advances and Future Directions. arXiv preprint arXiv:2502.15711.
- Kim, S., Kang, H., Choi, S., Kim, D., Yang, M., & Park, C. (2024, August). Large language models meet collaborative filtering: An efficient all-round llm-based recommender system. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 1395-1406).
- Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., ... & Wen, J. R. (2023). A survey of large language models. arXiv preprint arXiv:2303.18223, 1(2).
- Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders, P., ... & Werneck, R. F. (2016). Route planning in transportation networks. In Algorithm engineering: Selected results and surveys (pp. 19-80). Cham: Springer International Publishing.
- Delling, D., Pajor, T., & Werneck, R. F. (2015). Round-based public transit routing. Transportation Science, 49(3), 591-604. [CrossRef]
- Koopmans, C., Groot, W., Warffemius, P., Annema, J. A., & Hoogendoorn-Lanser, S. (2013). Measuring generalised transport costs as an indicator of accessibility changes over time. Transport Policy, 29, 154-159. [CrossRef]
- Bast, H., Carlsson, E., Eigenwillig, A., Geisberger, R., Harrelson, C., Raychev, V., & Viger, F. (2010, September). Fast routing in very large public transportation networks using transfer patterns. In European Symposium on Algorithms (pp. 290-301). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Wu, F., Lyu, C., & Liu, Y. (2022). A personalized recommendation system for multi-modal transportation systems. Multimodal transportation, 1(2), 100016. [CrossRef]
- Duncan, L. C., Watling, D. P., Connors, R. D., Rasmussen, T. K., & Nielsen, O. A. (2020). Path Size Logit route choice models: Issues with current models, a new internally consistent approach, and parameter estimation on a large-scale network with GPS data. Transportation Research Part B: Methodological, 135, 1-40. [CrossRef]
- Nielsen, O. A., Eltved, M., Anderson, M. K., & Prato, C. G. (2021). Relevance of detailed transfer attributes in large-scale multimodal route choice models for metropolitan public transport passengers. Transportation Research Part A: Policy and Practice, 147, 76-92. [CrossRef]
- Marra, A. D., & Corman, F. (2025). Modelling route choice in public transport with deep learning. Transportation, 1-31. [CrossRef]
- Liu, H., Tong, Y., Zhang, P., Lu, X., Duan, J., & Xiong, H. (2019, July). Hydra: A personalized and context-aware multi-modal transportation recommendation system. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2314-2324).
- Farazi, N. P., Zou, B., Ahamed, T., & Barua, L. (2021). Deep reinforcement learning in transportation research: A review. Transportation research interdisciplinary perspectives, 11, 100425. [CrossRef]
- Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78-94. [CrossRef]
- Rossiiev, O. D., Shapovalova, N. N., Rybalchenko, O. H., & Striuk, A. M. (2025). A comprehensive survey on reinforcement learning-based recommender systems: State-of-the-art, challenges, and future perspectives. In CEUR Workshop Proceedings (pp. 428-440).
- Møller, T. H., Simlett, J., & Mugnier, E. (2020). Micromobility: moving cities into a sustainable future. Safe Micromobility. Report by the International Transport Forum OECD/ITF.
- Grosshuesch, K. (2019). Solving the first mile/last mile problem: Electric scooters and dockless bicycles are positioned to provide relief to commuters struggling with a daily commute. Wm. & Mary Envtl. L. & Pol’y Rev., 44, 847.
- Oeschger, G., Carroll, P., & Caulfield, B. (2020). Micromobility and public transport integration: The current state of knowledge. Transportation Research Part D: Transport and Environment, 89, 102628. [CrossRef]
- Schneider, M., Stenger, A., & Goeke, D. (2014). The electric vehicle-routing problem with time windows and recharging stations. Transportation science, 48(4), 500-520. [CrossRef]
- Huang, H., Bucher, D., Kissling, J., Weibel, R., & Raubal, M. (2018). Multimodal route planning with public transport and carpooling. IEEE Transactions on Intelligent Transportation Systems, 20(9), 3513-3525. [CrossRef]
- Bongiovanni, L., Armengaud, E., Jover, S. F., Yalcin, I. K., Rossini, E., Mamei, M., ... & Litke, A. (2025, April). Smart City Pilots: Advancing Sustainable Mobility and Urban Innovation. In 2025 Smart Systems Integration Conference and Exhibition (SSI) (pp. 1-6). IEEE.
- Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS), 42(3), 1-21.
- Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
- Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901.
- Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357. [CrossRef]
- Agatz, N., Erera, A., Savelsbergh, M., & Wang, X. (2012). Optimization for dynamic ride-sharing: A review. European Journal of Operational Research, 223(2), 295-303. [CrossRef]
- Varun, B., Raghuvaran, K., Chandrakanth Rao, M., Hemanth Kumar, G., & Sanjay Ramdas, B. (2025). A Review of Machine Learning Ranking Systems: Methods, Applications, and Challenges. J Contemp Edu Theo Artific Intel: JCETAI-119.
- Shah, K. J., Pan, S. Y., Lee, I., Kim, H., You, Z., Zheng, J. M., & Chiang, P. C. (2021). Green transportation for sustainability: Review of current barriers, strategies, and innovative technologies. Journal of Cleaner Production, 326, 129392. [CrossRef]
- Assemi, B., Baker, D., & Paz, A. (2020). Searching for on-street parking: An empirical investigation of the factors influencing cruise time. Transport Policy, 97, 186-196. [CrossRef]
- Alghamdi, T., Mostafi, S., Abdelkader, G., & Elgazzar, K. (2022). A comparative study on traffic modeling techniques for predicting and simulating traffic behavior. Future Internet, 14(10), 294. [CrossRef]
- Ortega, J., Tóth, J., & Péter, T. (2021). Planning a park and ride system: A literature review. Future Transportation, 1(1), 82-98. [CrossRef]









| ID | Path |
Total Distance (m) |
Total Duration (s) |
| 1 | START → Scooter-2 → Stop (before reaching our destination) → END | 5302.4 | 1737.3 |
| 2 | START → Scooter-2 → Car in Parking-2 → Parking-1 → Scooter-1 → END | 9631.0 | 2778.6 |
| 3 | START → Scooter-2 → Car in Parking-2 → Parking-3 → Scooter-3 → END | 10298.2 | 2949.4 |
| 4 | START → Scooter-2 → Car in Parking-3 → Parking-1 → Scooter-1 → END | 12592.1 | 3160.4 |
| 5 | START → Scooter-2 → Sea Vessel in Port-1 → Port-2 → Scooter-3 → END | 7047.6 | 2357.4 |
| Parameter | Before Simulation Started | After Simulation Completed |
| Number of Available Users | 80 | 55 |
| Number of Available “Active” Users | 57 | 32 |
| Number of Available “Inactive” Users | 23 | 23 |
| Number of Available Vehicles | 90 | 63 |
| Number of Available Cars | 30 | 26 |
| Number of Available E-scooters | 50 | 29 |
| Number of Available Sea Vessels | 10 | 8 |
| ID | Pattern | Count |
| 1 | FOOT-ESCOOTER-FOOT | 44 |
| 2 | FOOT-CAR-FOOT | 36 |
| 3 | FOOT-ESCOOTER | 17 |
| 4 | FOOT-ESCOOTER-SEAVESSEL-FOOT-ESCOOTER | 14 |
| 5 | FOOT-ESCOOTER-CAR-FOOT | 10 |
| 6 | FOOT-CAR-FOOT-SEAVESSEL-FOOT | 9 |
| 7 | FOOT-ESCOOTER-SEAVESSEL-FOOT-ESCOOTER-FOOT | 7 |
| 8 | FOOT-ESCOOTER-CAR-FOOT-ESCOOTER | 7 |
| 9 | FOOT-CAR-FOOT-ESCOOTER-FOOT | 6 |
| 10 | FOOT-CAR-FOOT-ESCOOTER | 5 |
| 1 | EcoMobility project, https://www.ecomobility-project.eu/
|
| 2 | Baidu Maps, https://map.baidu.com/
|
| 3 | Message Queuing Telemetry Transport (MQTT) protocol, https://mqtt.org/
|
| 4 | JavaScript Object Notation (JSON), https://www.json.org/json-en.html
|
| 5 | Google Maps, https://www.google.com/maps
|
| 6 | |
| 7 | OpenStreetMap, https://www.openstreetmap.org/
|
| 8 | SQLite, https://sqlite.org/
|
| 9 | REST, https://restfulapi.net/
|
| 10 | JSON schema, https://json-schema.org/
|
| 11 | geojson.io website, https://geojson.io/
|
| 12 | ChatGPT, https://chatgpt.com/
|
| 13 | Istanbul City population, https://www.citypopulation.de/en/turkey/istanbulcity/
|
| 14 | Openrouteservice, https://openrouteservice.org/
|
| 15 | SQLAlchemy, https://www.sqlalchemy.org/
|
| 16 | SQLite, https://sqlite.org/
|
| 17 | GeoJSON, https://geojson.org/
|
| 18 | FastAPI, https://fastapi.tiangolo.com/
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
