Preprint
Article

This version is not peer-reviewed.

Nanocomposite Thin Films: Structural, Electrical, and Optoelectronic Properties of n-ZnNiO/p-Si Heterostructures

Submitted:

06 February 2026

Posted:

09 February 2026

You are already at the latest version

Abstract
This work investigated the structural, morphological, electrical and photovoltaic properties of n-ZnNiO/p-Si heterostructures. ZnNiO nanocomposite thin films were fabricated on p-Si (100) substrates using pulsed laser deposition, enabling the formation of n-type oxide/p-type silicon heterojunctions. The crystalline structure and surface morphology of the deposited thin films were examined using X-ray diffraction and scanning electron microscopy, revealing well-defined crystalline features and uniform surface morphology. The electrical characteristics were analyzed through current–voltage measurements, allowing the extraction of key diode parameters. In addition, the optoelectronic response under ultraviolet illumination was investigated, demonstrating pronounced photosensitivity in the UV spectral range. Several important electrical and optoelectronic parameters relevant to ultraviolet photodetection were determined and discussed. The obtained results indicate that ZnNiO-based heterostructures combined with silicon substrates constitute a promising material platform for advanced optoelectronic and ultraviolet applications.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated