Submitted:
03 February 2026
Posted:
05 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Dynamic Roles of the Core and Non-Core Liver Matrisomal Components in Balancing Liver Regeneration and Fibrosis
3.1. Core Matrisome
3.2. Non-Core Matrisome
3. Liver ECM Orchestrates Regeneration Through a Mechano-Biochemical Circuit
4. Liver ECM Coordinates Liver Regeneration Through Multicellular Crosstalk
5. ECM as a Therapeutic Target and Engineering Blueprint Orchestrating Liver Regeneration
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ANXA2 | Annexin A2 |
| AREG | Amphiregulin |
| BDL | Bile duct ligation |
| BECs | Biliary epithelial cells |
| BMP-7 | Bone morphogenetic protein 7 |
| BAPN | β-aminopropionitrile |
| CTGF | Connective tissue growth factor |
| CYR61 | Cysteine-rich angiogenic inducer 61 |
| dECM | Decellularized extracellular matrix |
| DCN | Decorin |
| DDC | 3,5-diethoxycarbonyl-1,4-dihydrocollidine model |
| ECM | Extracellular matrix |
| EGF | Epidermal growth factor |
| EV | Extracellular vesicle |
| FAK | Focal adhesion kinase |
| GAL3 | Galectin-3 |
| GSK3β | Glycogen synthase kinase 3 beta |
| HA | Hyaluronic acid |
| HCV | Hepatitis C virus |
| HGF | Hepatocyte growth factor |
| HSC | Hepatic stellate cell |
| KC | Kupffer cell |
| LOX/LOXL | Lysyl oxidase / lysyl oxidase-like enzymes |
| LSEC | Liver sinusoidal endothelial cells |
| MMPs | Matrix metalloproteinases |
| NASH | Non-alcoholic steatohepatitis |
| NFAT | Nuclear factor of activated T cells |
| OPN | Osteopontin |
| PDGF | Platelet-derived growth factor |
| PHx | Partial hepatectomy |
| RAF | Rapidly accelerated fibrosarcoma kinase |
| RAS | Rat sarcoma family GTPase |
| SPARC | Secreted protein acidic and rich in cysteine |
| SPP1 | Secreted phosphoprotein 1 |
| TAA | Thioacetamide |
| TCF | T cell factor |
| TEAD | TEA domain transcription factor family |
| TIMPs | Tissue inhibitors of metalloproteinases |
| TRPV4 | Transient receptor potential vanilloid 4 |
| VCAN | Versican |
| VEGF | Vascular endothelial growth factor |
References
- Liu, Q.; Wang, S.; Fu, J.; Chen, Y.; Xu, J.; Wei, W.; Song, H.; Zhao, X.; Wang, H. Liver Regeneration after Injury: Mechanisms, Cellular Interactions and Therapeutic Innovations. Clin Transl Med 2024, 14(8), e1812. [Google Scholar] [CrossRef]
- Michalopoulos, G. K.; Bhushan, B. Liver Regeneration: Biological and Pathological Mechanisms and Implications. Nat Rev Gastroenterol Hepatol 2021, 18(1), 40–55. [Google Scholar] [CrossRef] [PubMed]
- Mak, K. M.; Shin, D. W. Liver Sinusoids versus Central Veins: Structures, Markers, Angiocrines, and Roles in Liver Regeneration and Homeostasis. Anat Rec (Hoboken) 2021, 304(8), 1661–1691. [Google Scholar] [CrossRef]
- Hammerich, L.; Tacke, F. Liver Inflammatory Responses in Liver Fibrosis. Nat Rev Gastroenterol Hepatol 2023, 20(10), 633–646. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Schwabe, R. F. Liver Stellate Cell Heterogeneity: Functional Aspects and Therapeutic Implications. Hepatology 2025. [Google Scholar] [CrossRef]
- Shu, W.; Yang, M.; Yang, J.; Lin, S.; Wei, X.; Xu, X. Cellular Crosstalk during Liver Regeneration: Unity in Diversity. Cell Commun Signal 2022, 20(1), 117. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, M.; Seki, E. The Liver Fibrosis Niche: Novel Insights into the Interplay between Fibrosis-Composing Mesenchymal Cells, Immune Cells, Endothelial Cells, and Extracellular Matrix. Food Chem Toxicol 2020, 143, 111556. [Google Scholar] [CrossRef]
- Ortiz, C.; Schierwagen, R.; Schaefer, L.; Klein, S.; Trepat, X.; Trebicka, J. Extracellular Matrix Remodeling in Chronic Liver Disease. Curr Tissue Microenviron Rep 2021, 2(3), 41–52. [Google Scholar] [CrossRef]
- Berumen, J.; Baglieri, J.; Kisseleva, T.; Mekeel, K. Liver Fibrosis: Pathophysiology and Clinical Implications. WIREs Mech Dis 2021, 13(1), e1499. [Google Scholar] [CrossRef]
- Zhou, X.; Xing, Z.; Dong, R.; Zhang, X.; Liang, X.; Lu, Z.; Yang, G. Cell Function Experiments and Bioinformatics Analysis Jointly Revealed the Antineoplastic Effect of Lumican on Hepatocellular Carcinoma. Phenomics 2025, 5(3), 252–269. [Google Scholar] [CrossRef]
- Chen, W.; Sun, Y.; Chen, S.; Ge, X.; Zhang, W.; Zhang, N.; Wu, X.; Song, Z.; Han, H.; Desert, R.; Yan, X.; Yang, A.; Das, S.; Athavale, D.; Nieto, N.; You, H. Matrisome Gene-Based Subclassification of Patients with Liver Fibrosis Identifies Clinical and Molecular Heterogeneities. Hepatology 2023, 78(4), 1118–1132. [Google Scholar] [CrossRef]
- Ma, X.; Huang, T.; Chen, X.; Li, Q.; Liao, M.; Fu, L.; Huang, J.; Yuan, K.; Wang, Z.; Zeng, Y. Molecular Mechanisms in Liver Repair and Regeneration: From Physiology to Therapeutics. Signal Transduct Target Ther 2025, 10(1), 63. [Google Scholar] [CrossRef]
- Zhao, Y.-Q.; Deng, X.-W.; Xu, G.-Q.; Lin, J.; Lu, H.-Z.; Chen, J. Mechanical Homeostasis Imbalance in Liver Stellate Cells Activation and Liver Fibrosis. Front Mol Biosci 2023, 10, 1183808. [Google Scholar] [CrossRef]
- Ishikawa, J.; Takeo, M.; Iwadate, A.; Koya, J.; Kihira, M.; Oshima, M.; Suzuki, Y.; Taniguchi, K.; Kobayashi, A.; Tsuji, T. Mechanical Homeostasis of Liver Sinusoid Is Involved in the Initiation and Termination of Liver Regeneration. Commun Biol 2021, 4(1), 409. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, W.; Xiang, J.; Liu, P.; Ke, M.; Wang, B.; Wu, R.; Lv, Y. Collagen I Promotes Hepatocellular Carcinoma Cell Proliferation by Regulating Integrin Β1/FAK Signaling Pathway in Nonalcoholic Fatty Liver. Oncotarget 2017, 8(56), 95586–95595. [Google Scholar] [CrossRef]
- Hayes, A. J.; Farrugia, B. L.; Biose, I. J.; Bix, G. J.; Melrose, J. Perlecan, a Multi-Functional, Cell-Instructive, Matrix-Stabilizing Proteoglycan with Roles in Tissue Development Has Relevance to Connective Tissue Repair and Regeneration. Front Cell Dev Biol 2022, 10, 856261. [Google Scholar] [CrossRef]
- Hynes, R. O. The Extracellular Matrix: Not Just Pretty Fibrils. Science 2009, 326(5957), 1216–1219. [Google Scholar] [CrossRef]
- Adamek, B.; Zalewska-Ziob, M.; Strzelczyk, J. K.; Kasperczyk, J.; Wołkowska-Pokrywa, K.; Spausta, G.; Hudziec, E.; Wiczkowski, A.; Świętochowska, E.; Kukla, M.; Ostrowska, Z. Hepatocyte Growth Factor and Epidermal Growth Factor Activity during Later Stages of Rat Liver Regeneration upon Interferon α-2b Influence. Clin Exp Hepatol 2017, 3(1), 9–15. [Google Scholar] [CrossRef]
- Midwood, K. S.; Orend, G. The Role of Tenascin-C in Tissue Injury and Tumorigenesis. J Cell Commun Signal 2009, 3(3–4), 287–310. [Google Scholar] [CrossRef]
- Nirwane, A.; Yao, Y. Laminins and Their Receptors in the CNS. Biol Rev Camb Philos Soc 2019, 94(1), 283–306. [Google Scholar] [CrossRef]
- Gonzalez-Molina, J.; Zhang, X.; Borghesan, M.; Mendonça da Silva, J.; Awan, M.; Fuller, B.; Gavara, N.; Selden, C. Extracellular Fluid Viscosity Enhances Liver Cancer Cell Mechanosensing and Migration. Biomaterials 2018, 177, 113–124. [Google Scholar] [CrossRef]
- Hardingham, T. E.; Fosang, A. J. Proteoglycans: Many Forms and Many Functions. FASEB J 1992, 6(3), 861–870. [Google Scholar] [CrossRef]
- Schaefer, L.; Iozzo, R. V. Biological Functions of the Small Leucine-Rich Proteoglycans: From Genetics to Signal Transduction. J Biol Chem 2008, 283(31), 21305–21309. [Google Scholar] [CrossRef]
- Humphrey, J. D.; Dufresne, E. R.; Schwartz, M. A. Mechanotransduction and Extracellular Matrix Homeostasis. Nat Rev Mol Cell Biol 2014, 15(12), 802–812. [Google Scholar] [CrossRef]
- Karsdal, M. A.; Nielsen, M. J.; Sand, J. M.; Henriksen, K.; Genovese, F.; Bay-Jensen, A.-C.; Smith, V.; Adamkewicz, J. I.; Christiansen, C.; Leeming, D. J. Extracellular Matrix Remodeling: The Common Denominator in Connective Tissue Diseases. Possibilities for Evaluation and Current Understanding of the Matrix as More than a Passive Architecture, but a Key Player in Tissue Failure. Assay Drug Dev Technol 2013, 11(2), 70–92. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, N.; Wu, W.; Li, H.; You, H.; Chen, W. Atlas of Mildly and Highly Insoluble Matrisome Driving Liver Fibrosis. Front Pharmacol 2024, 15, 1435359. [Google Scholar] [CrossRef]
- Naim, A.; Pan, Q.; Baig, M. S. Matrix Metalloproteinases (MMPs) in Liver Diseases. J Clin Exp Hepatol 2017, 7(4), 367–372. [Google Scholar] [CrossRef]
- Chen, K.; Xu, M.; Lu, F.; He, Y. Development of Matrix Metalloproteinases-Mediated Extracellular Matrix Remodeling in Regenerative Medicine: A Mini Review. Tissue Eng Regen Med 2023, 20(5), 661–670. [Google Scholar] [CrossRef]
- Chen, W.; Yang, A.; Jia, J.; Popov, Y. V.; Schuppan, D.; You, H. Lysyl Oxidase (LOX) Family Members: Rationale and Their Potential as Therapeutic Targets for Liver Fibrosis. Hepatology 2020, 72(2), 729–741. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, A.; Zhang, W.; Li, H.; Xu, A.; Yan, X.; Han, Q.; Wang, B.; You, H.; Chen, W. Crosstalk of Lysyl Oxidase-like 1 and Lysyl Oxidase Prolongs Their Half-Lives and Regulates Liver Fibrosis through Notch Signal. Hepatology Communications 2024, 8(4). [Google Scholar] [CrossRef]
- Ikenaga, N.; Peng, Z.-W.; Vaid, K. A.; Liu, S. B.; Yoshida, S.; Sverdlov, D. Y.; Mikels-Vigdal, A.; Smith, V.; Schuppan, D.; Popov, Y. V. Selective Targeting of Lysyl Oxidase-like 2 (LOXL2) Suppresses Liver Fibrosis Progression and Accelerates Its Reversal. Gut 2017, 66(9), 1697–1708. [Google Scholar] [CrossRef]
- Hsieh, W.-C.; Mackinnon, A. C.; Lu, W.-Y.; Jung, J.; Boulter, L.; Henderson, N. C.; Simpson, K. J.; Schotanus, B.; Wojtacha, D.; Bird, T. G.; Medine, C. N.; Hay, D. C.; Sethi, T.; Iredale, J. P.; Forbes, S. J. Galectin-3 Regulates Liver Progenitor Cell Expansion during Liver Injury. Gut 2015, 64(2), 312–321. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; He, Y.; Wang, H. Role of the Annexin a Protein Family in Liver Diseases: Insights and Therapeutic Opportunities. Front Pharmacol 2025, 16, 1569927. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, M.; Jin, Q.; Wang, X.; Xu, Y.; Li, M.; Chen, S.; Tang, Q.; Wang, Q.; Hu, B.; Wu, H.; Xiao, M.; Qu, L.; Zhang, Q.; Liu, J. The Upregulation of Annexin A2 by TLR4 Pathway Facilitates Lipid Accumulation and Liver Injury via Blocking AMPK/mTOR-Mediated Autophagy Flux during the Development of Non-Alcoholic Fatty Liver Disease. Hepatol Int 2024, 18(4), 1144–1157. [Google Scholar] [CrossRef]
- Akhtam, R.; Nuraliyevna, S. N.; Kadham, M. J.; Mirzakhamitovna, K. S.; Tursunaliyevna, R. M.; Shakhnoz, K.; Shakhzod, T.; Otabek, B.; Baxtiyorovich, M. I.; Shakhboskhanovna, A. F.; Zulxumorxon, B.; Isroilovna, I. M.; Khodji-Akbarovna, N. R. Biomarkers in Liver Regeneration. Clin Chim Acta 2025, 576, 120413. [Google Scholar] [CrossRef]
- Wen, Y.; Ju, C. New Insights into Liver Injury and Regeneration from Single-Cell Transcriptomics. eGastroenterology 2025, 3(3), e100202. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, C.; Zhao, Y.; Ye, B.; Yu, G. Signaling Pathways of Liver Regeneration: Biological Mechanisms and Implications. iScience 2024, 27(1), 108683. [Google Scholar] [CrossRef]
- Sharip, A.; Kunz, J. Mechanosignaling via Integrins: Pivotal Players in Liver Fibrosis Progression and Therapy. Cells 2025, 14(4), 266. [Google Scholar] [CrossRef]
- Katoh, K. Integrin and Its Associated Proteins as a Mediator for Mechano-Signal Transduction. Biomolecules 2025, 15(2), 166. [Google Scholar] [CrossRef]
- Di, X.; Gao, X.; Peng, L.; Ai, J.; Jin, X.; Qi, S.; Li, H.; Wang, K.; Luo, D. Cellular Mechanotransduction in Health and Diseases: From Molecular Mechanism to Therapeutic Targets. Signal Transduct Target Ther 2023, 8(1), 282. [Google Scholar] [CrossRef]
- Vallet, S. D.; Ricard-Blum, S. Lysyl Oxidases: From Enzyme Activity to Extracellular Matrix Cross-Links. Essays Biochem 2019, 63(3), 349–364. [Google Scholar] [CrossRef] [PubMed]
- Karnawat, K.; Parthasarathy, R.; Sakhrie, M.; Karthik, H.; Krishna, K. V.; Balachander, G. M. Building in Vitro Models for Mechanistic Understanding of Liver Regeneration in Chronic Liver Diseases. J Mater Chem B 2024, 12(32), 7669–7691. [Google Scholar] [CrossRef]
- Chen, T.; Oh, S.; Gregory, S.; Shen, X.; Diehl, A. M. Single-Cell Omics Analysis Reveals Functional Diversification of Hepatocytes during Liver Regeneration. JCI Insight 2020, 5(22), e141024, 141024. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Wantono, C.; Tan, Y.; Deng, F.; Duan, T.; Liu, D. Regulators, Functions, and Mechanotransduction Pathways of Matrix Stiffness in Liver Disease. Front Physiol 2023, 14, 1098129. [Google Scholar] [CrossRef]
- Shah, H.; Guddati, M. N. Towards Linking Histological Changes to Liver Viscoelasticity: A Hybrid Analytical-Computational Micromechanics Approach. Phys Med Biol 2025, 70(4). [Google Scholar] [CrossRef]
- Ye, B.; Yue, M.; Chen, H.; Sun, C.; Shao, Y.; Jin, Q.; Zhang, C.; Yu, G. YAP/TAZ as Master Regulators in Liver Regeneration and Disease: Insights into Mechanisms and Therapeutic Targets. Mol Biol Rep 2025, 52(1), 78. [Google Scholar] [CrossRef]
- Sichler, A.; Hüser, N.; Janssen, K.-P. Boosting Liver Regeneration: Kinase Inhibitor as a New Tool to Prevent Liver Failure. Signal Transduct Target Ther 2024, 9(1), 168. [Google Scholar] [CrossRef]
- Liu, S.; Xu, X.; Fang, Z.; Ning, Y.; Deng, B.; Pan, X.; He, Y.; Yang, Z.; Huang, K.; Li, J. Piezo1 Impairs Hepatocellular Tumor Growth via Deregulation of the MAPK-Mediated YAP Signaling Pathway. Cell Calcium 2021, 95, 102367. [Google Scholar] [CrossRef]
- Ji, C.; McCulloch, C. A. TRPV4 Integrates Matrix Mechanosensing with Ca2+ Signaling to Regulate Extracellular Matrix Remodeling. FEBS J 2021, 288(20), 5867–5887. [Google Scholar] [CrossRef]
- Yang, C.; Tibbitt, M. W.; Basta, L.; Anseth, K. S. Mechanical Memory and Dosing Influence Stem Cell Fate. Nature Mater 2014, 13(6), 645–652. [Google Scholar] [CrossRef]
- Chen, G.; Xia, B.; Fu, Q.; Huang, X.; Wang, F.; Chen, Z.; Lv, Y. Matrix Mechanics as Regulatory Factors and Therapeutic Targets in Liver Fibrosis. Int J Biol Sci 2019, 15(12), 2509–2521. [Google Scholar] [CrossRef]
- Campana, L.; Esser, H.; Huch, M.; Forbes, S. Liver Regeneration and Inflammation: From Fundamental Science to Clinical Applications. Nat Rev Mol Cell Biol 2021, 22(9), 608–624. [Google Scholar] [CrossRef]
- Michalopoulos, G. K. Hepatostat: Liver Regeneration and Normal Liver Tissue Maintenance. Hepatology 2017, 65(4), 1384–1392. [Google Scholar] [CrossRef]
- Zhang, L.; Theise, N.; Chua, M.; Reid, L. M. The Stem Cell Niche of Human Livers: Symmetry between Development and Regeneration. Hepatology 2008, 48(5), 1598–1607. [Google Scholar] [CrossRef]
- Tirnitz-Parker, J. E. E.; Forbes, S. J.; Olynyk, J. K.; Ramm, G. A. Cellular Plasticity in Liver Regeneration: Spotlight on Cholangiocytes. Hepatology 2019, 69(5), 2286–2289. [Google Scholar] [CrossRef]
- Ding, B.-S.; Nolan, D. J.; Butler, J. M.; James, D.; Babazadeh, A. O.; Rosenwaks, Z.; Mittal, V.; Kobayashi, H.; Shido, K.; Lyden, D.; Sato, T. N.; Rabbany, S. Y.; Rafii, S. Inductive Angiocrine Signals from Sinusoidal Endothelium Are Required for Liver Regeneration. Nature 2010, 468(7321), 310–315. [Google Scholar] [CrossRef]
- Wang, W.-L.; Zheng, X.-L.; Li, Q.-S.; Liu, W.-Y.; Hu, L.-S.; Sha, H.-C.; Guo, K.; Lv, Y.; Wang, B. The Effect of Aging on VEGF/VEGFR2 Signal Pathway Genes Expression in Rat Liver Sinusoidal Endothelial Cell. Mol Cell Biochem 2021, 476(1), 269–277. [Google Scholar] [CrossRef]
- Cenciarini, M.; Uccelli, A.; Mangili, F.; Grunewald, M.; Bersini, S. Microvascular Health as a Key Determinant of Organismal Aging. Adv Sci (Weinh) 2025, e08659. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Sakai, K.; Nakamura, T.; Matsumoto, K. Hepatocyte Growth Factor Twenty Years on: Much More than a Growth Factor. J Gastroenterol Hepatol 2011, 26 Suppl 1, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.; Baber, J.; Fujii, T.; Coito, A. J. Matrix Metalloproteinases in Liver Injury, Repair and Fibrosis. Matrix Biol 2015, 44–46, 147–156. [Google Scholar] [CrossRef]
- Reynaert, H.; Chavez, M.; Geerts, A. Vascular Endothelial Growth Factor and Liver Regeneration. Journal of Hepatology 2001, 34(5), 759–761. [Google Scholar] [CrossRef]
- Dupont, S.; Morsut, L.; Aragona, M.; Enzo, E.; Giulitti, S.; Cordenonsi, M.; Zanconato, F.; Le Digabel, J.; Forcato, M.; Bicciato, S.; Elvassore, N.; Piccolo, S. Role of YAP/TAZ in Mechanotransduction. Nature 2011, 474(7350), 179–183. [Google Scholar] [CrossRef]
- Yan, Q.; Sage, E. H. SPARC, a Matricellular Glycoprotein with Important Biological Functions. J Histochem Cytochem 1999, 47(12), 1495–1506. [Google Scholar] [CrossRef]
- Neubauer, K.; Saile, B.; Ramadori, G. Liver Fibrosis and Altered Matrix Synthesis. Can J Gastroenterol 2001, 15(3), 187–193. [Google Scholar] [CrossRef] [PubMed]
- Schwabe, R. F.; Brenner, D. A. Liver Stellate Cells: Balancing Homeostasis, Hepatoprotection and Fibrogenesis in Health and Disease. Nat Rev Gastroenterol Hepatol 2025, 22(7), 481–499. [Google Scholar] [CrossRef] [PubMed]
- Stamati, K.; Priestley, J. V.; Mudera, V.; Cheema, U. Laminin Promotes Vascular Network Formation in 3D in Vitro Collagen Scaffolds by Regulating VEGF Uptake. Exp Cell Res 2014, 327(1), 68–77. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Scimeca, M.; Sun, Q.; Melino, G.; Mauriello, A.; Shao, C.; Centre, TOR; Shi, Y.; Piacentini, M.; Tisone, G.; Agostini, M. Harnessing Metabolism of Liver Macrophages to Aid Liver Regeneration. Cell Death Dis 2023, 14(8), 574. [Google Scholar] [CrossRef]
- Vining, K. H.; Mooney, D. J. Mechanical Forces Direct Stem Cell Behaviour in Development and Regeneration. Nat Rev Mol Cell Biol 2017, 18(12), 728–742. [Google Scholar] [CrossRef]
- Kukan, M.; Haddad, P. S. Role of Hepatocytes and Bile Duct Cells in Preservation-Reperfusion Injury of Liver Grafts. Liver Transpl 2001, 7(5), 381–400. [Google Scholar] [CrossRef]
- Gadd, V. L.; Aleksieva, N.; Forbes, S. J. Epithelial Plasticity during Liver Injury and Regeneration. Cell Stem Cell 2020, 27(4), 557–573. [Google Scholar] [CrossRef]
- Michalopoulos, G. K.; Khan, Z. Liver Regeneration, Growth Factors, and Amphiregulin. Gastroenterology 2005, 128(2), 503–506. [Google Scholar] [CrossRef]
- Wang, X.; Lopategi, A.; Ge, X.; Lu, Y.; Kitamura, N.; Urtasun, R.; Leung, T.-M.; Fiel, M. I.; Nieto, N. Osteopontin Induces Ductular Reaction Contributing to Liver Fibrosis. Gut 2014, 63(11), 1805–1818. [Google Scholar] [CrossRef]
- Rodrigo-Torres, D.; Affò, S.; Coll, M.; Morales-Ibanez, O.; Millán, C.; Blaya, D.; Alvarez-Guaita, A.; Rentero, C.; Lozano, J. J.; Maestro, M. A.; Solar, M.; Arroyo, V.; Caballería, J.; van Grunsven, L. A.; Enrich, C.; Ginès, P.; Bataller, R.; Sancho-Bru, P. The Biliary Epithelium Gives Rise to Liver Progenitor Cells. Hepatology 2014, 60(4), 1367–1377. [Google Scholar] [CrossRef]
- Williams, M. J.; Clouston, A. D.; Forbes, S. J. Links between Liver Fibrosis, Ductular Reaction, and Progenitor Cell Expansion. Gastroenterology 2014, 146(2), 349–356. [Google Scholar] [CrossRef]
- Elchaninov, A.; Vishnyakova, P.; Glinkina, V.; Fatkhudinov, T.; Sukhikh, G. Liver Regeneration as a Model for Studying Cellular Plasticity in Mammals: The Roles of Hepatocytes and Cholangiocytes. Cells 2025, 14(15), 1129. [Google Scholar] [CrossRef]
- Luo, Z.; Peng, W.; Xu, Y.; Xie, Y.; Liu, Y.; Lu, H.; Cao, Y.; Hu, J. Exosomal OTULIN from M2 Macrophages Promotes the Recovery of Spinal Cord Injuries via Stimulating Wnt/β-Catenin Pathway-Mediated Vascular Regeneration. Acta Biomater 2021, 136, 519–532. [Google Scholar] [CrossRef]
- Chen, L.-P.; Cai, M.; Zhang, Q.-H.; Li, Z.-L.; Qian, Y.-Y.; Bai, H.-W.; Wei, X.; Shi, B.-Y.; Dong, J.-H. Activation of Interleukin-6/STAT3 in Rat Cholangiocyte Proliferation Induced by Lipopolysaccharide. Dig Dis Sci 2009, 54(3), 547–554. [Google Scholar] [CrossRef]
- Li, W.; Chang, N.; Li, L. Heterogeneity and Function of Kupffer Cells in Liver Injury. Front Immunol 2022, 13, 940867. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-Y.; Li, X.-F.; Meng, X.-M.; Huang, C.; Zhang, L.; Li, J. Macrophage Phenotype in Liver Injury and Repair. Scand J Immunol 2017, 85(3), 166–174. [Google Scholar] [CrossRef]
- Korchilava, B.; Khachidze, T.; Megrelishvili, N.; Svanadze, L.; Kakabadze, M.; Tsomaia, K.; Jintcharadze, M.; Kordzaia, D. Liver Regeneration after Partial Hepatectomy: Triggers and Mechanisms. World J Hepatol 2025, 17(7), 107378. [Google Scholar] [CrossRef]
- Xiao, Q.; Ge, G. Lysyl Oxidase, Extracellular Matrix Remodeling and Cancer Metastasis. Cancer Microenviron 2012, 5(3), 261–273. [Google Scholar] [CrossRef] [PubMed]
- Louis, H.; Le Moine, O.; Goldman, M.; Devière, J. Modulation of Liver Injury by Interleukin-10. Acta Gastroenterol Belg 2003, 66(1), 7–14. [Google Scholar]
- Wynn, T. A.; Vannella, K. M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016, 44(3), 450–462. [Google Scholar] [CrossRef]
- Naba, A. Mechanisms of Assembly and Remodelling of the Extracellular Matrix. Nat Rev Mol Cell Biol 2024, 25(11), 865–885. [Google Scholar] [CrossRef]
- Daley, W. P.; Peters, S. B.; Larsen, M. Extracellular Matrix Dynamics in Development and Regenerative Medicine. J Cell Sci 2008, 121 Pt 3, 255–264. [Google Scholar] [CrossRef]
- Michalopoulos, G. K. Liver Regeneration: Molecular Mechanisms of Growth Control. FASEB J 1990, 4(2), 176–187. [Google Scholar] [CrossRef]
- Vogel, V. Unraveling the Mechanobiology of Extracellular Matrix. Annu Rev Physiol 2018, 80, 353–387. [Google Scholar] [CrossRef]
- Martinez-Hernandez, A.; Amenta, P. S. The Extracellular Matrix in Liver Regeneration. FASEB J 1995, 9(14), 1401–1410. [Google Scholar] [CrossRef]
- Ma, R.; Chen, J.; Li, Z.; Tang, J.; Wang, Y.; Cai, X. Decorin Accelerates the Liver Regeneration after Partial Hepatectomy in Fibrotic Mice. Chin Med J (Engl) 2014, 127(14), 2679–2685. [Google Scholar] [PubMed]
- Masuda, A.; Nakamura, T.; Abe, M.; Iwamoto, H.; Sakaue, T.; Tanaka, T.; Suzuki, H.; Koga, H.; Torimura, T. Promotion of Liver Regeneration and Anti-fibrotic Effects of the TGF-β Receptor Kinase Inhibitor Galunisertib in CCl4-treated Mice. Int J Mol Med 2020, 46(1), 427–438. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Meng, F.; Liu, Y.; Yuan, Y.; Wang, J.; Wu, D.; Cui, Y.; Zhang, S.; Guo, H.; Liang, S.; Wang, W.; Klos, M.; Morgenstern, S.; Liu, Y.; Sun, L.; Ma, K.; Liu, X.; Wang, Y.; Han, J.; Yang, G.; Zheng, C.; Li, X.; Zhou, S.; Ji, C.; Bai, Q.; Wang, J.; Liu, L. Inhibition of TGFβ1 Accelerates Regeneration of Fibrotic Rat Liver Elicited by a Novel Two-Staged Hepatectomy. Theranostics 2021, 11(10), 4743–4758. [Google Scholar] [CrossRef]
- Wang, F. H.; Qaed, E.; Aldahmash, W.; Mahyoub, M. A.; Al-Mutairi, D. S.; Tang, Z.; Almoiliqy, M. Phosphocreatine Alleviates Liver Fibrosis in Diabetic Mice by Targeting TGF-β/Smad and α-SMA Pathways. Tissue Cell 2025, 96, 103013. [Google Scholar] [CrossRef]
- Shen, M.; Zheng, Y.; Tu, J.; Zhao, F. Mechanism of Astaxanthin-Mediated TGF-β/SMAD Signaling Pathway in the Activation of LX-2 Cells and Anti-Liver Fibrosis. Journal of Radiation Research and Applied Sciences 2025, 18(3), 101713. [Google Scholar] [CrossRef]
- Khongpiroon, C.; Buakaew, W.; Brindley, P. J.; Potikanond, S.; Daowtak, K.; Thongsri, Y.; Potup, P.; Usuwanthim, K. Effect of 3-HBI on Liver Fibrosis via the TGF-β/SMAD2/3 Pathway on the Human Liver Stellate Cell Model. IJMS 2025, 26(13), 6022. [Google Scholar] [CrossRef]
- Ding, C.; Liu, B.; Yu, T.; Wang, Z.; Peng, J.; Gu, Y.; Li, Z. SIRT7 Protects against Liver Fibrosis by Suppressing Stellate Cell Activation via TGF-β/SMAD2/3 Pathway. Biomedicine & Pharmacotherapy 2024, 180, 117477. [Google Scholar] [CrossRef]
- Klepfish, M.; Gross, T.; Vugman, M.; Afratis, N. A.; Havusha-Laufer, S.; Brazowski, E.; Solomonov, I.; Varol, C.; Sagi, I. LOXL2 Inhibition Paves the Way for Macrophage-Mediated Collagen Degradation in Liver Fibrosis. Front. Immunol. 2020, 11, 480. [Google Scholar] [CrossRef]
- Chaudhari, N.; Findlay, A. D.; Stevenson, A. W.; Clemons, T. D.; Yao, Y.; Joshi, A.; Sayyar, S.; Wallace, G.; Rea, S.; Toshniwal, P.; Deng, Z.; Melton, P. E.; Hortin, N.; Iyer, K. S.; Jarolimek, W.; Wood, F. M.; Fear, M. W. Topical Application of an Irreversible Small Molecule Inhibitor of Lysyl Oxidases Ameliorates Skin Scarring and Fibrosis. Nat Commun 2022, 13(1), 5555. [Google Scholar] [CrossRef]
- Liu, S. B.; Ikenaga, N.; Peng, Z.; Sverdlov, D. Y.; Greenstein, A.; Smith, V.; Schuppan, D.; Popov, Y. Lysyl Oxidase Activity Contributes to Collagen Stabilization during Liver Fibrosis Progression and Limits Spontaneous Fibrosis Reversal in Mice. The FASEB Journal 2016, 30(4), 1599–1609. [Google Scholar] [CrossRef] [PubMed]
- Schilter, H.; Findlay, A. D.; Perryman, L.; Yow, T. TT.; Moses, J.; Zahoor, A.; Turner, C. I.; Deodhar, M.; Foot, J. S.; Zhou, W.; Greco, A.; Joshi, A.; Rayner, B.; Townsend, S.; Buson, A.; Jarolimek, W. The Lysyl Oxidase like 2/3 Enzymatic Inhibitor, PXS-5153A, Reduces Crosslinks and Ameliorates Fibrosis. J Cell Mol Med 2019, 23(3), 1759–1770. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-H.; Mars, W. M.; Stolz, D. B.; Michalopoulos, G. K. Expression and Activation of Pro-MMP-2 and pro-MMP-9 during Rat Liver Regeneration. Hepatology 2000, 31(1), 75–82. [Google Scholar] [CrossRef]
- Yokoo, T.; Kamimura, K.; Nozawa, R.; Sugita, M.; Shibata, O.; Kobayashi, Y.; Abe, H.; Miura, H.; Ohtsuka, M.; Terai, S. Therapeutic Effect of Hydrodynamics-Based Delivery of Matrix Metalloproteinase-13 Gene on Thioacetamide-Induced Liver Fibrosis in Rats. Advances in Cell and Gene Therapy 2023, 2023, 1–8. [Google Scholar] [CrossRef]
- Endo, H.; Niioka, M.; Sugioka, Y.; Itoh, J.; Kameyama, K.; Okazaki, I.; Ala-Aho, R.; Kähäri, V.-M.; Watanabe, T. Matrix Metalloproteinase-13 Promotes Recovery from Experimental Liver Cirrhosis in Rats. Pathobiology 2011, 78(5), 239–252. [Google Scholar] [CrossRef]
- Wang, X.; Maretti-Mira, A. C.; Wang, L.; DeLeve, L. D. Liver-Selective MMP-9 Inhibition in the Rat Eliminates Ischemia-Reperfusion Injury and Accelerates Liver Regeneration. Hepatology 2019, 69(1), 314–328. [Google Scholar] [CrossRef]
- Cheng, J. H.; She, H.; Han, Y.-P.; Wang, J.; Xiong, S.; Asahina, K.; Tsukamoto, H. Wnt Antagonism Inhibits Liver Stellate Cell Activation and Liver Fibrosis. American Journal of Physiology-Gastrointestinal and Liver Physiology 2008, 294(1), G39–G49. [Google Scholar] [CrossRef] [PubMed]
- Chatani, N.; Kamada, Y.; Kizu, T.; Ogura, S.; Furuta, K.; Egawa, M.; Hamano, M.; Ezaki, H.; Kiso, S.; Shimono, A.; Ouchi, N.; Yoshida, Y.; Takehara, T. Secreted Frizzled-Related Protein 5 (Sfrp5) Decreases Liver Stellate Cell Activation and Liver Fibrosis. Liver Int 2015, 35(8), 2017–2026. [Google Scholar] [CrossRef]
- Akcora, B. Ö.; Storm, G.; Bansal, R. Inhibition of Canonical WNT Signaling Pathway by β-Catenin/CBP Inhibitor ICG-001 Ameliorates Liver Fibrosis in Vivo through Suppression of Stromal CXCL12. Biochim Biophys Acta Mol Basis Dis 2018, 1864(3), 804–818. [Google Scholar] [CrossRef]
- Duspara, K.; Bojanic, K.; Pejic, J. I.; Kuna, L.; Kolaric, T. O.; Nincevic, V.; Smolic, R.; Vcev, A.; Glasnovic, M.; Curcic, I. B.; Smolic, M. Targeting the Wnt Signaling Pathway in Liver Fibrosis for Drug Options: An Update. J Clin Transl Hepatol 2021, 9(6), 960–971. [Google Scholar] [CrossRef]
- Kimura, K.; Ikoma, A.; Shibakawa, M.; Shimoda, S.; Harada, K.; Saio, M.; Imamura, J.; Osawa, Y.; Kimura, M.; Nishikawa, K.; Okusaka, T.; Morita, S.; Inoue, K.; Kanto, T.; Todaka, K.; Nakanishi, Y.; Kohara, M.; Mizokami, M. Safety, Tolerability, and Preliminary Efficacy of the Anti-Fibrotic Small Molecule PRI-724, a CBP/β-Catenin Inhibitor, in Patients with Hepatitis C Virus-Related Cirrhosis: A Single-Center, Open-Label, Dose Escalation Phase 1 Trial. EBioMedicine 2017, 23, 79–87. [Google Scholar] [CrossRef]
- Sugimoto, H.; Yang, C.; LeBleu, V. S.; Soubasakos, M. A.; Giraldo, M.; Zeisberg, M.; Kalluri, R. BMP-7 Functions as a Novel Hormone to Facilitate Liver Regeneration. FASEB J 2007, 21(1), 256–264. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Dong, L.; Cheng, Y.; Huang, X.; Xue, B.; Jiang, C.; Cao, Y.; Yang, J. Hydrogel-Based Strategies for Liver Tissue Engineering. Chem Bio Eng. 2024, 1(11), 887–915. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, W.; Zhang, N.; Chen, S.; Huang, T.; You, H. Pipeline for Precise Insoluble Matrisome Coverage in Tissue Extracellular Matrices. Front Bioeng Biotechnol 2023, 11, 1135936. [Google Scholar] [CrossRef]
- Loneker, A. E.; Faulk, D. M.; Hussey, G. S.; D’Amore, A.; Badylak, S. F. Solubilized Liver Extracellular Matrix Maintains Primary Rat Hepatocyte Phenotype In-Vitro. J Biomed Mater Res A 2016, 104(4), 957–965. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liang, C.; Jiang, W.; Deng, J.; Gu, R.; Li, W.; Tian, F.; Tang, L.; Sun, H. Tissue-Specific Hydrogels Ameliorate Liver Ischemia/Reperfusion Injury in Rats by Regulating Macrophage Polarization via TLR4/NF-κB Signaling. ACS Biomater Sci Eng 2021, 7(4), 1552–1563. [Google Scholar] [CrossRef]
- Xu, Z.-Y.; Wang, M.; Shi, J.-Y.; Liu, Y.; Yu, C.; Zhang, X.-Y.; Zhang, C.-W.; He, Q.-F.; Pan, C.; Zhou, J.; Xiao, H.; Cao, H.-Y.; Ma, Y. Engineering a Dynamic Extracellular Matrix Using Thrombospondin-1 to Propel Hepatocyte Organoids Reprogramming and Improve Mouse Liver Regeneration Post-Transplantation. Mater Today Bio 2025, 32, 101700. [Google Scholar] [CrossRef]
- Udagawa, D.; Nagata, S.; Yagi, H.; Nishi, K.; Morisaku, T.; Adachi, S.; Nakano, Y.; Tanaka, M.; Hori, S.; Hasegawa, Y.; Abe, Y.; Kitago, M.; Kitagawa, Y. A Novel Approach to Orthotopic Hepatocyte Transplantation Engineered with Liver Hydrogel for Fibrotic Livers, Enhancing Cell-Cell Interaction and Angiogenesis. Cell Transplant 2024, 33, 9636897241253700. [Google Scholar] [CrossRef]
- Damania, A.; Kumar, A.; Teotia, A. K.; Kimura, H.; Kamihira, M.; Ijima, H.; Sarin, S. K.; Kumar, A. Decellularized Liver Matrix-Modified Cryogel Scaffolds as Potential Hepatocyte Carriers in Bioartificial Liver Support Systems and Implantable Liver Constructs. ACS Appl Mater Interfaces 2018, 10(1), 114–126. [Google Scholar] [CrossRef]
- Zou, C.-Y.; Han, C.; Xiong, M.; Hu, J.-J.; Jiang, Y.-L.; Zhang, X.-Z.; Li, Y.-X.; Zhao, L.-M.; Song, Y.-T.; Zhang, Q.-Y.; Li, Q.-J.; Nie, R.; Zhang, Y.-Q.; Li-Ling, J.; Xie, H.-Q. All-in-One Extracellular Matrix-Based Powders with Instant Self-Assembly and Multiple Bioactivities Integrate Hemostasis and in-Situ Tissue Functional Repair. Bioact Mater 2025, 50, 215–231. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; Chai, Y.; Jin, Y.; Li, F.; Zhuo, C.; Xu, Y.; Wang, H.; Ju, E.; Lao, Y.-H.; Xie, X.; Li, M.; Tao, Y. Mesenchymal Stromal/Stem Cell Spheroid-Derived Extracellular Vesicles Advance the Therapeutic Efficacy of 3D-Printed Vascularized Artificial Liver Lobules in Liver Failure Treatment. Bioactive Materials 2025, 49, 121–139. [Google Scholar] [CrossRef]



| Target | Intervention | Models | Effect | References |
|---|---|---|---|---|
| TGF-β | Recombinant decorin (binds to TGF-β) | PHx or CCl₄ mouse models | ++ | [89] |
| LY2157299 | PHx or CCl₄ mouse models | + | [90,91] | |
| LOXl2 | AB0023 | TAA or DDC mouse models | +++ | [31] |
| GS341 | CCl₄ mouse models | ++ | [96] | |
| MMP-13 MMP-9 |
||||
| MMP13-encoding plasmids (pBGI-MMP13) | TAA mouse models | ++ | [101] | |
| MMP-9 antisense oligonucleotides | PHx rat models | ++ | [103] | |
| Wnt3a/4/5a Wnt5a |
DKK1 | BDL mouse models, primary mouse HSCs | ++ | [104] |
| sFRP5 | CCl₄ mouse models | + | [105] | |
| Wnt pathway | ICG-001 | CCl₄ mouse models, LX-2 cells, primary human fibroblasts | ++ | [106] |
| PRI-724 | Human HCV | + | [108] | |
| BMP-7 | Recombinant human BMP-7 (rhBMP-7) | PHx mouse models | + | |
| dECM | ||||
| Injectable hydrogel | Rat models of liver ischemia/reperfusion injury | ++ | [113] | |
| L-ECM hydrogel | TAA rat models | ++ | [115] | |
| dECM-Cryogel implantable scaffold | Liver failure rat models | + | [116] | |
| Self-assembling dECM hydrogel adhesive | Rabbit models of hemorrhage liver injury | ++ | [117] | |
| dECM-based bioengineered lobules | Mouse models of acute liver failure | ++ | [118] | |
| THBS1-dECM | PHx mouse models, primary mouse hepatocytes | +++ | [114] | |
| L-ECM hydrogel | Rat primary hepatocytes | ++ | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
