Submitted:
03 February 2026
Posted:
04 February 2026
You are already at the latest version
Abstract
Keywords:
I. Introduction
- (1)
- We formulate node classification in text-attributed graphs as a multi-chain reasoning problem and propose a modular prompting architecture to support scalable and interpretable inference.
- (2)
- We finetune a FinLLM in an efficient manner so that it can perform the kind of reasoning chain we expect from domain-informed knowledge with sufficient expressiveness while remaining computationally tractable.
- (3)
- A fusion method to aggregate the outcomes of multi-view reasoning for better accuracy and explainability in decision making process.
II. Related Work
III. Model
A. Task Definition
B. Supply Chain Risk Knowledge Injection
C. Hierarchical Reasoning Chain Construction
D. Multi-Chain Decision Fusion
IV. Experiments
A. Experiment Settings
B. Multi-Chain Decision Fusion
| Model | Accuracy | Macro-F1 | Precision | Recall |
|---|---|---|---|---|
| GFHF | 0.543 | 0.49 | 0.502 | 0.4689 |
| SMRW | 0.738 | 0.749 | 0.738 | 0.7615 |
| OMNI-P | 0.727 | 0.735 | 0.727 | 0.7419 |
| ChatGL | 0.326 | 0.271 | 0.174 | 0.3281 |
| Qwen2 | 0.523 | 0.474 | 0.21 | 0.5615 |
| BERT+ | 0.782±0.01 | 0.776±0.01 | 0.781±0.01 | 0.773±0.010 |
| Graph+ | 0.791±0.01 | 0.785±0.01 | 0.789±0.01 | 0.782±0.009 |
| FinSCR | 0.850±0.01 | 0.841±0.01 | 0.845±0.01 | 0.838±0.008 |
C. Ablation Study
D. Case Study
V. Conclusions and Suggestions
References
- Maheshwari, H.; Bandyopadhyay, S.; Garimella, A.; Natarajan, A. Presentations are not always linear! GNN meets LLM for document-to-presentation transformation with attribution. arXiv 2024, arXiv:2405.13095. [Google Scholar] [CrossRef]
- Li, W.; Zhou, H.; Yu, J.; Song, Z.; Yang, W. Coupled mamba: Enhanced multimodal fusion with coupled state space model. Advances in Neural Information Processing Systems 2024, 37, 59808–59832. [Google Scholar]
- Das, D.; Gupta, I.; Srivastava, J.; Kang, D. Which modality should I use-text, motif, or image?: Understanding graphs with large language models. Findings of the Association for Computational Linguistics: NAACL 2024, 2024, June; pp. 503–519. [Google Scholar]
- Ouyang, K.; Ke, Z.; Fu, S.; Liu, L.; Zhao, P.; Hu, D. Learn from global correlations: Enhancing evolutionary algorithm via spectral gnn. arXiv 2024, arXiv:2412.17629. [Google Scholar] [CrossRef]
- Refael, Y.; Arbel, I.; Lindenbaum, O.; Tirer, T. LORENZA: Enhancing generalization in low-rank gradient LLM training via efficient zeroth-order adaptive SAM. arXiv 2025, arXiv:2502.19571. [Google Scholar] [CrossRef]
- Wan, W.; Zhou, F.; Liu, L.; Fang, L.; Chen, X. Ownership structure and R&D: The role of regional governance environment. International Review of Economics & Finance 2021, 72, 45–58. [Google Scholar] [CrossRef]
- Ogbuonyalu, U. O.; Abiodun, K.; Dzamefe, S.; Vera, E. N.; Oyinlola, A.; Igba, E. Beyond the credit score: The untapped power of LLMS in banking risk models. Finance & Accounting Research Journal 2025. [Google Scholar]
- Wei, D.; Wang, Z.; Kang, H.; Sha, X.; Xie, Y.; Dai, A.; Ouyang, K. A comprehensive analysis of digital inclusive finance’s influence on high quality enterprise development through fixed effects and deep learning frameworks. Scientific Reports 2025, 15(1), 30095. [Google Scholar] [CrossRef]
- Ke, Z.; Cao, Y.; Chen, Z.; Yin, Y.; He, S.; Cheng, Y. Early warning of cryptocurrency reversal risks via multi-source data. Finance Research Letters 2025, 107890. [Google Scholar]
- Nguyen, M. V.; Luo, L.; Shiri, F.; Phung, D.; Li, Y. F.; Vu, T.; Haffari, G. Direct evaluation of chain-of-thought in multi-hop reasoning with knowledge graphs. Findings of the Association for Computational Linguistics: ACL 2024, 2024, August; pp. 2862–2883. [Google Scholar]
- Roy, A.; Yan, N.; Mortazavi, M. Llm-driven knowledge distillation for dynamic text-attributed graphs. arXiv 2025, arXiv:2502.10914. [Google Scholar] [CrossRef]
- Wang, Qin; Huang, Bolin; Liu, Qianying. Deep Learning-Based Design Framework for Circular Economy Supply Chain Networks: A Sustainability Perspective. In Proceedings of the 2025 2nd International Conference on Digital Economy and Computer Science (DECS ‘25); Association for Computing Machinery: New York, NY, USA, 2026; pp. 836–840. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Fang, L. An Enhanced Credit Risk Evaluation by Incorporating Related Party Transaction in Blockchain Firms of China. Mathematics 2024, 12(17), 2673. [Google Scholar] [CrossRef]
- Ilyushin, P.; Gaisin, B.; Shahmaev, I.; Suslov, K. An Algorithm for Identifying the Possibilities of Cascading Failure Processes and Their Development Trajectories in Electric Power Systems. Algorithms 2025, 18(4), 183. [Google Scholar] [CrossRef]
- Tapia-Rosero, A.; Bronselaer, A.; De Mol, R.; De Tré, G. Fusion of preferences from different perspectives in a decision-making context. Information fusion 2016, 29, 120–131. [Google Scholar] [CrossRef]
- Zheng, H.; Lin, Y.; He, Q.; Zou, Y.; Wang, H. Blockchain Payment Fraud Detection with a Hybrid CNN-GNN-LSTM Model. 30 January 2026. Available online: Https://Www.researchgate.net/Publication/400235797_Blockchain_Payment_Fraud_Detection_with_a_Hybrid_CNN-GNN-LSTM_Model. [CrossRef]
- Ke, Zong; Shen, Jiaqing; Zhao, Xuanyi; Fu, Xinghao; Wang, Yang; Li, Zichao; Liu, Lingjie; Mu, Huailing. A stable technical feature with GRU-CNN-GA fusion. Applied Soft Computing 2025, 114302. [Google Scholar] [CrossRef]
- McCoy, R. T.; Pavlick, E.; Linzen, T. Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference. arXiv 2019, arXiv:1902.01007. [Google Scholar] [CrossRef]
- He, Yangfan; Li, Sida; Wang, Jianhui; Li, Kun; Song, Xinyuan; Yuan, Xinhang; Li, Keqin; et al. Enhancing low-cost video editing with lightweight adaptors and temporal-aware inversion. arXiv 2025, arXiv:2501.04606. [Google Scholar] [CrossRef]
- Sui, Mingxiu; Su, Yiyun; Shen, Jiaqing; et al. Intelligent Anti-Money Laundering on Cryptocurrency: A CNN-GNN Fusion Approach. Authorea 2026. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, G.; Wang, H.; Li, J.; Zhang, C. Multi-scale video super-resolution transformer with polynomial approximation. IEEE Transactions on Circuits and Systems for Video Technology 2023, 33(9), 4496–4506. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, R.; Wang, T. Self-Destructive Language Model. arXiv 2025, arXiv:2505.12186. [Google Scholar] [CrossRef]
- He, Yangfan; Wang, Jianhui; Li, Kun; Wang, Yijin; Sun, Li; Yin, Jun; Zhang, Miao; Wang, Xueqian. Enhancing intent understanding for ambiguous prompts through human-machine co-adaptation. arXiv 2025. [Google Scholar] [CrossRef]
- Yu, Z.; Idris, M. Y. I.; Wang, P. Visualizing our changing Earth: A creative AI framework for democratizing environmental storytelling through satellite imagery. The Thirty-ninth Annual Conference on Neural Information Processing Systems Creative AI Track: Humanity; 2025. [Google Scholar]
- Zhang, F.; Chen, G.; Wang, H.; Zhang, C. CF-DAN: Facial-expression recognition based on cross-fusion dual-attention network. Computational Visual Media 2024, 10(3), 593–608. [Google Scholar] [CrossRef]
- Kang, Zhaolu; Gong, Junhao; Yan, Jiaxu; Xia, Wanke; Wang, Yian; Wang, Ziwen; Ding, Huaxuan; et al. HSSBench: Benchmarking Humanities and Social Sciences Ability for Multimodal Large Language Models. arXiv 2025, arXiv:2506.03922. [Google Scholar] [CrossRef]
- Ouyang, K.; Fu, S.; Chen, Y.; Chen, H. Dynamic Graph Neural Evolution: An Evolutionary Framework Integrating Graph Neural Networks with Adaptive Filtering. 2025 IEEE Congress on Evolutionary Computation (CEC), 2025, June; IEEE; pp. 1–8. [Google Scholar]
- Liu, S.; Xu, S.; Qiu, W.; Zhang, H.; Zhu, M. Explainable reinforcement learning from human feedback to improve alignment. arXiv 2025, arXiv:2512.13837. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Yun, T.; Feng, P.; Huang, J.; Tang, R. Taco: Enhancing multimodal in-context learning via task mapping-guided sequence configuration. In Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, 2025, November; pp. 736–763. [Google Scholar]
- Guo, H.; Wu, Q.; Wang, Y. AUHF-DETR: A Lightweight Transformer with Spatial Attention and Wavelet Convolution for Embedded UAV Small Object Detection. Remote Sensing 2025, 17(11), 1920. [Google Scholar] [CrossRef]
- Shi, Ge; Liu, Jiahang; Yang, Chang; An, Quan; Tian, Zhuang; Chen, Chuang; Zhang, Jingran; Li, Xinyu; Zhang, Yunpeng; Xu, Jinghai. Study on the spatiotemporal evolution of urban spatial structure in Nanjing’s main urban area: A coupling study of POI and nighttime light data. Frontiers of Architectural Research 2025, 14(6), 1780–1793. [Google Scholar] [CrossRef]
- Zeng, Yiming; Yu, Wanhao; Li, Zexin; Ren, Tao; Ma, Yu; Cao, Jinghan; Chen, Xiyan; Yu, Tingting. Bridging the Editing Gap in LLMs: FineEdit for Precise and Targeted Text Modifications. arXiv 2025. [Google Scholar] [CrossRef]
- He, L.; Tang, P.; Zhang, Y.; Zhou, P.; Su, S. Mitigating privacy risks in Retrieval-Augmented Generation via locally private entity perturbation. Information Processing & Management 2025, 62(4), 104150. [Google Scholar] [CrossRef]
- Zhao, Y.; Dai, C.; Zhuo, W.; Xiu, Y.; Niyato, D. CLAUSE: Agentic Neuro-Symbolic Knowledge Graph Reasoning via Dynamic Learnable Context Engineering. arXiv 2025, arXiv:2509.21035. [Google Scholar] [CrossRef]
- Hou, Y.; Xu, T.; Hu, H.; Wang, P.; Xue, H.; Bai, Y. MdpCaps-CSL for SAR image target recognition with limited labeled training data. IEEE Access 2020, 8, 176217–176231. [Google Scholar] [CrossRef]
- Yuan, Keyu; Lin, Yuqing; Wu, Wenjun; et al. Detection of Blockchain Online Payment Fraud Via CNN-LSTM. Authorea 2026. [Google Scholar] [CrossRef]
- Shen, J. L.; Wu, X. Y. Periodic-soliton and periodic-type solutions of the (3+ 1)-dimensional Boiti–Leon–Manna–Pempinelli equation by using BNNM. Nonlinear Dynamics 2021, 106(1), 831–840. [Google Scholar] [CrossRef]
- Min, M.; Duan, J.; Liu, M.; Wang, N.; Zhao, P.; Zhang, H.; Han, Z. Task Offloading with Differential Privacy in Multi-Access Edge Computing: An A3C-Based Approach. IEEE Transactions on Cognitive Communications and Networking 2026. [Google Scholar] [CrossRef]
- Li, Yanshu; Cao, Yi; He, Hongyang; Cheng, Qisen; Fu, Xiang; Xiao, Xi; Wang, Tianyang; Tang, Ruixiang. M²IV: Towards efficient and fine-grained multimodal in-context learning via representation engineering. Second Conference on Language Modeling; 2025. [Google Scholar]
- Luo, J.; Wu, Q.; Wang, Y.; Zhou, Z.; Zhuo, Z.; Guo, H. MSHF-YOLO: Cotton growth detection algorithm integrated multi-semantic and high-frequency features. Digital Signal Processing 2025, 167, 105423. [Google Scholar] [CrossRef]
- He, L.; Li, C.; Tang, P.; Su, S. Going Deeper into Locally Differentially Private Graph Neural Networks. Forty-second International Conference on Machine Learning; 2025. [Google Scholar]
- Ma, Ke; Fang, Yizhou; Weibel, Jean-Baptiste; Tan, Shuai; Wang, Xinggang; Xiao, Yang; Fang, Yi; Xia, Tian. Phys-Liquid: A Physics-Informed Dataset for Estimating 3D Geometry and Volume of Transparent Deformable Liquids. arXiv 2025, arXiv:2511.11077. [Google Scholar] [CrossRef]
- Zhao, Y.; Dai, C.; Xiu, Y.; Kou, M.; Zheng, Y.; Niyato, D. ShardMemo: Masked MoE Routing for Sharded Agentic LLM Memory. arXiv 2026. Available online: https://arxiv.org/abs/2601.21545. [CrossRef]
- Hou, Y.; Wang, Y.; Xia, X.; Tian, Y.; Li, Z.; Quek, T. Q. Toward Secure SAR Image Generation via Federated Angle-Aware Generative Diffusion Framework. IEEE Internet of Things Journal 2025, 13(2), 2713–2730. [Google Scholar] [CrossRef]
- Li, Long; Hao, Jiaran; Liu, Jason Klein; Zhou, Zhijian; Miao, Yanting; Pang, Wei; Tan, Xiaoyu; et al. The choice of divergence: A neglected key to mitigating diversity collapse in reinforcement learning with verifiable reward. arXiv 2025, arXiv:2509.07430. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Chen, G.; Liang, J.; Wang, T. Reasoning or Retrieval? A Study of Answer Attribution on Large Reasoning Models. arXiv 2025, arXiv:2509.24156. [Google Scholar] [CrossRef]
- Peng, W.; Zhang, K. HarmoniDPO: Video-guided Audio Generation via Preference-Optimized Diffusion: W. Peng, K. Zhang. International Journal of Computer Vision 2026, 134(2), 77. [Google Scholar] [CrossRef]
- Wei, Dedai; Wang, Zimo; Qiu, Minyu; Yu, Juntao; Yu, Jiaquan; Jin, Yurun; Sha, Xinye; Ouyang, Kaichen. Multiple objectives escaping bird search optimization and its application in stock market prediction based on transformer model. Scientific Reports 2025, 15(1), 5730. [Google Scholar] [CrossRef] [PubMed]
- Ke, Z.; Yin, Y. Tail risk alert based on conditional autoregressive var by regression quantiles and machine learning algorithms. 2024 5th International Conference on Artificial Intelligence and Computer Engineering (ICAICE), 2024, November; IEEE; pp. 527–532. [Google Scholar]
- Yu, Z.; Idris, M. Y. I.; Wang, P.; Qureshi, R. CoTextor: Training-free modular multilingual text editing via layered disentanglement and depth-aware fusion. The Thirty-ninth Annual Conference on Neural Information Processing Systems Creative AI Track: Humanity; 2025. [Google Scholar]
- Peng, W.; Zhang, K.; Yang, Y.; Zhang, H.; Qiao, Y. Data adaptive traceback for vision-language foundation models in image classification. In Proceedings of the AAAI Conference on Artificial Intelligence, 2024, March; Vol. 38, pp. 4506–4514. [Google Scholar]
- He, L.; Tang, P.; Sun, L.; Su, S. The Devil Within, The Cure Without: Securing Locally Private Graph Learning under Poisoning. In Proceedings of the ACM on Web Conference 2026; 2026. [Google Scholar]
- Shi, G.; Sun, L.; An, Q.; Tang, L.; Shi, J.; Chen, C.; Feng, L.; Ma, H. Quantifying Urban Park Cooling Effects and Tri-Factor Synergistic Mechanisms: A Case Study of Nanjing’s Central Districts. Systems 2026, 14(2), 130. [Google Scholar] [CrossRef]
- Peng, W.; Zhang, K.; Zhang, S. Q. T3M: Text Guided 3D Human Motion Synthesis from Speech. arXiv 2024, arXiv:2408.12885. [Google Scholar] [CrossRef]
- Li, X.; Ma, Y.; Ye, K.; Cao, J.; Zhou, M.; Zhou, Y. Hy-facial: Hybrid feature extraction by dimensionality reduction methods for enhanced facial expression classification. arXiv 2025, arXiv:2509.26614. [Google Scholar] [CrossRef]
- Zeng, Shuang; Qi, Dekang; Chang, Xinyuan; Xiong, Feng; Xie, Shichao; Wu, Xiaolong; Liang, Shiyi; Xu, Mu; Wei, Xing. Janusvln: Decoupling semantics and spatiality with dual implicit memory for vision-language navigation. arXiv 2025, arXiv:2509.22548. [Google Scholar] [CrossRef]
- Zhou, Y. A Unified Reinforcement Learning Framework for Dynamic User Profiling and Predictive Recommendation. 2025 3rd International Conference on Artificial Intelligence and Automation Control (AIAC), 2025, October; IEEE; pp. 432–436. [Google Scholar]

| Model | Class | Precision | Recall | F1 |
|---|---|---|---|---|
| BERT+GCN | High | 0.75 | 0.72 | 0.76 |
| Medium | 0.79 | 0.81 | 0.8 | |
| Low | 0.8 | 0.79 | 0.8 | |
| GraphSAGE+RoBERTa | High | 0.76 | 0.74 | 0.75 |
| Medium | 0.8 | 0.83 | 0.82 | |
| Low | 0.81 | 0.8 | 0.81 | |
| FinSCRA (Ours) | High | 0.86 | 0.84 | 0.85 |
| Medium | 0.85 | 0.86 | 0.86 | |
| Low | 0.83 | 0.84 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
