Submitted:
02 February 2026
Posted:
03 February 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Coating Preparation
2.2. Microstructural Characterization
3. Results & Discussion
3.1. Coating Thickness
3.2. Hardness
3.3. Surface Roughness
3.4. Evaluation of X-Ray Diffraction
3.4.1. Sample 1
3.4.2. Sample 2
3.4.3. Sample 3
3.4.4. Sample 4
3.5. Tribological Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Babu, N.; Balasubramaniam, R.; Ghosh, A. High-temperature oxidation of Fe3Al-based iron aluminides in oxygen. Corros. Sci. 2001, 43, 2239–2254. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, W.; Zhu, S.; Wang, F. Comparison between the oxidation of iron in oxygen and in steam at 650–750 °C. Corros. Sci. 2013, 75, 309–317. [Google Scholar] [CrossRef]
- Agüero, A.; Baráibar, I.; Gutiérrez, M.; Tuurna, S.; Toivonen, A.; Penttilä, S.; Auerkari, P. Steam Oxidation of Aluminide-Coated and Uncoated TP347HFG Stainless Steel under Atmospheric and Ultra-Supercritical Steam Conditions at 700 °C. Coatings 2020, 10, 839. [Google Scholar] [CrossRef]
- Castro, R.M.; Cavaler, L.C.C.; Marques, F.M.; Bristot, V.M.; Rocha, A.S. Comparative of the tribological performance of hydraulic cylinders coated by the process of thermal spray HVOF and hard chrome plating. Tribol. Ind. 2014, 36, 79–89. [Google Scholar]
- Rakhadilov, B.; Bayatanova, L.; Kengesbekov, A.; Magazov, N.; Toleukhanova, Z.; Yeskermessov, D. Study of the influence of air plasma spraying parameters on the structure, corrosion resistance, and tribological characteristics of Fe–Al–Cr intermetallic coatings. Coatings 2025, 15, 790. [Google Scholar] [CrossRef]
- Li, N.; Chen, L.-Y.; Chai, L.; Xuan, H.-N.; Wang, Z.; Zhang, L.; Dubovyy, O.; Zhang, J.; Lu, S. A novel plasma-sprayed Cr/FeCrAl dual-layer coating on Zr alloy for potential high-temperature applications. J. Mater. Res. Technol. 2024, 30, 5569–5581. [Google Scholar] [CrossRef]
- Bellippady, M.; Björklund, S.; Li, X.-H.; Frykholm, R.; Kjellman, B.; Joshi, S.; Markocsan, N. Performance of atmospheric plasma-sprayed thermal barrier coatings on additively manufactured superalloy substrates. Coatings 2024, 14, 626. [Google Scholar] [CrossRef]
- Boronenkov, V.; Korobov, Y. Fundamentals of Arc Spraying: Physical and Chemical Regularities; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Lee, J.; Kwon, H.; Kim, Y.G.; Lee, C. Tribological and microstructural properties of carbon steel coatings fabricated by wire arc spray. Metals Mater. Int. 2020, 26, 650–659. [Google Scholar] [CrossRef]
- Liu, G.; Rożniatowski, K.; Kurzydłowski, K.J. Quantitative characteristics of FeCrAl films deposited by arc and high-velocity arc spraying. Mater. Charact. 2001, 46, 99–104. [Google Scholar] [CrossRef]
- Cheng, C.Q.; Zhao, J.; Cao, T.S.; Fu, Q.Q.; Lei, M.K. Facile chromaticity approach for the inspection of passive films on austenitic stainless steel. Corros. Sci. 2013, 70, 235–242. [Google Scholar] [CrossRef]
- Liu, X.; Shao, Y.; Zhang, Y.; Meng, G.; Zhang, T.; Wang, F. Using high-temperature mechanochemistry treatment to modify iron oxide and improve the corrosion performance of epoxy coating—Part I: High-temperature ball milling treatment. Corros. Sci. 2015, 90, 451–462. [Google Scholar] [CrossRef]
- Ndumia, J.N.; Kang, M.; Lin, J.; Liu, J.; Li, H. Influence of Heat Treatment on the Microstructure and Wear Properties of Arc-Sprayed FeCrAl/Al Coating. Coatings 2022, 12, 374. [Google Scholar] [CrossRef]
- Ndumia, J.N.; Zhu, J.; Gbenontin, B.V.; Kang, M.; Liu, X.; Nyambura, S. M. Effect of Heat Treatment on the Microstructure and Corrosion Behavior of Arc-Sprayed FeCrAl/Al Coating. J. Mater. Eng. Perform. 2023, 32, 1489–1497. [Google Scholar] [CrossRef]
- Liu, L.; Yang, Z.G.; Zhang, C.; Ueda, M.; Kawamura, K.; Maruyama, T. Effect of water vapour on the oxidation of Fe–13Cr–5Ni martensitic alloy at 973 K. Corros. Sci. 2012, 60, 90–97. [Google Scholar] [CrossRef]
- Sarikaya, M. Effect of some parameters on microstructure and hardness of wire arc sprayed iron-based coatings. Surf. Coat. Technol. 2005, 190, 388–393. [Google Scholar] [CrossRef]
- Ataiwi, A. Effect of some processing parameters on arc sprayed coating. Eng. Technol. J. 2008, 26, 1554–1566. [Google Scholar] [CrossRef]
- Majewski, D.; Hejwowski, T.; Łukasik, D. Influence of microstructure of arc sprayed coatings on wear resistance. Adv. Sci. Technol. Res. J. 2018, 12, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.-H.; Jung, Y.-I.; Kim, H.-G.; Jang, J.-I. Oxidation-resistant FeCrAl coating on Zr-alloy tubes using 3D printing direct energy deposition. Surf. Coat. Technol. 2021, 411, 126915. [Google Scholar] [CrossRef]
- Luo, J.H.; Shi, N.; Xing, Y.Z.; Jiang, C.P.; Chen, Y.N. Effect of arc power on the wear and high-temperature oxidation resistance of plasma-sprayed Fe-based amorphous coatings. High Temp. Mater. Process. 2019, 38, 639–646. [Google Scholar] [CrossRef]
- Li, B.; Fan, L.; Bai, J.; He, J.; Su, J.; Wang, S.; Deng, C.; Liu, S.; Zhang, Z. Study on porosity of thermal-sprayed commercially pure aluminum coating. Materials 2023, 16, 6612. [Google Scholar] [CrossRef]
- Li, N.; Chen, L.-Y.; Wang, Z.-X.; Xuan, H.-N.; Chai, L.-J.; Yang, H.-L.; Dubovyy, O.; Lu, S. Enhancement of hardness and high-temperature oxidation resistance of Cr/FeCrAl dual-layer plasma-sprayed coating on Zr substrate by post-processing. J. Mater. Res. Technol. 2025, 36, 500–512. [Google Scholar] [CrossRef]
- Brundle, C.R.; Chuang, T.J.; Wandelt, K. Core and valence level photoemission studies of iron oxide surfaces and the oxidation of iron. Surf. Sci. 1977, 68, 459–468. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Hu, H.; Zhou, Z.; Li, M.; Zhang, L.; Wang, M.; Li, S.; Ge, C. Study of the corrosion behavior of an 18Cr oxide dispersion strengthened steel in supercritical water. Corros. Sci. 2012, 65, 209–213. [Google Scholar] [CrossRef]
- Gao, Y.; Chambers, S.A. Heteroepitaxial growth of α-Fe2O3, γ-Fe2O3 and Fe3O4 thin films by oxygen-plasma-assisted molecular beam epitaxy. J. Cryst. Growth 1997, 174, 446–454. [Google Scholar] [CrossRef]
- Kengesbekov, A. Influence of plasma arc current and gas flow on the structural and tribological properties of TiN coatings obtained by plasma spraying. Coatings 2024, 14, 1404. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Bagdasaryan, A.A.; Beresnev, V.M.; Nyemchenko, U.S.; Ivashchenko, V.I.; Kravchenko, Y.O.; Shaimardanov, Z.K.; Plotnikov, S.V.; Maksakova, O. Effects of Cr and Si additions and deposition conditions on the structure and properties of (Zr–Ti–Nb) N coatings. Ceram. Int. 2017, 43, 771–782. [Google Scholar] [CrossRef]
- Mamaeva, A.; Kenzhegulov, A.; Panichkin, A.; Abdulvaliyev, R.; Fischer, D.; Bakhytuly, N.; Toiynbaeva, N. Influence of current duty cycle and voltage of micro-arc oxidation on the microstructure and composition of calcium phosphate coating. Coatings 2024, 14, 766. [Google Scholar] [CrossRef]
- Yermakhanova, A.M.; Kenzhegulov, A.K.; Meiirbekov, M.N.; Baiserikov, B.M. Comparative study of dielectric characteristics and radio transparency of composite materials. J. Elastomers Plast. 2024, 56, 843–857. [Google Scholar] [CrossRef]
- Rakhadilov, B.; Magazov, N.; Kakimzhanov, D.; Apsezhanova, A.; Molbossynov, Y.; Kengesbekov, A. Influence of Spraying Process Parameters on the Characteristics of Steel Coatings Produced by Arc Spraying Method. Coatings 2024, 14, 1145. [Google Scholar] [CrossRef]









| Samples | Ra (µm) | Rq (µm) | Rz (µm) |
| 1 | 24.89 | 31.15 | 195.23 |
| 2 | 27.22 | 33.79 | 179.85 |
| 3 | 23.90 | 29.67 | 146.66 |
| 4 | 22.98 | 28.35 | 130.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
