Submitted:
01 February 2026
Posted:
03 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Biogas Development in Indonesia

2. Materials and Methods
2.1. Study Design and Data Collection

2.2. Sampling Strategy
| Characteristic | Category |
Adopters (n = 101) |
% |
Non-adopters (n = 100) |
% |
| Gender of household head | Male | 78 | 77.2 | 82 | 82.0 |
| Female | 23 | 22.8 | 18 | 18.0 | |
| Education level | No schooling / Illiterate | 6 | 5.9 | 23 | 23.0 |
| Primary school | 21 | 20.8 | 37 | 37.0 | |
| Secondary education | 54 | 53.5 | 33 | 33.0 | |
| Post-secondary / Vocational / University | 20 | 19.8 | 7 | 7.0 | |
| Household size (persons) | 1–3 | 22 | 21.8 | 38 | 38.0 |
| 4–6 | 61 | 60.4 | 49 | 49.0 | |
| ≥7 | 18 | 17.8 | 13 | 13.0 | |
| Age of household head (years) | 25–34 | 9 | 8.9 | 22 | 22.0 |
| 35–44 | 41 | 40.6 | 28 | 28.0 | |
| 45–54 | 31 | 30.7 | 29 | 29.0 | |
| 55–64 | 15 | 14.9 | 13 | 13.0 | |
| ≥65 | 5 | 5.0 | 8 | 8.0 | |
| Number of cattle owned | 1–4 | 11 | 10.9 | 32 | 32.0 |
| 5–8 | 59 | 58.4 | 53 | 53.0 | |
| ≥9 | 31 | 30.7 | 15 | 15.0 | |
| Landholding size (ha) | <0.25 | 7 | 6.9 | 22 | 22.0 |
| 0.25–0.50 | 25 | 24.8 | 36 | 36.0 | |
| 0.51–1.00 | 33 | 32.7 | 28 | 28.0 | |
| 1.01–1.50 | 23 | 22.8 | 10 | 10.0 | |
| >1.50 | 13 | 12.8 | 4 | 4.0 |
2.3. Econometric Analysis of Adoption Determinants
2.4. Causal Estimation of Adoption Effects
2.5. Sustainability–Resilience Interpretation
2.6. Sustainability–Resilience Framework

3. Results
3.1. Descriptive Characteristics of Adopters and Non-Adopters
3.2. Determinants of Biogas Adoption
3.3. Synthesis of Adoption Patterns and Implications for Causal Loop Analysis


4. Discussion
4.1. Adoption as a Function of Capability Rather Than Wealth
4.2. Livestock Ownership and the Robustness of Household Energy Systems
4.3. Fuel-Cost Pressure and the Limits of Economic Incentives
4.4. Implications for Sustainability and Resilience Outcomes
4.5. Positioning within the Biogas Impact Literature
5. Recommendation
5.1. From Adoption to Long-Term Sustainability
5.2. Strengthening Maintenance and Local Service Ecosystems
5.3. Targeted and Differentiated Program Design
5.4. Contributions to Climate and Sustainable Development Goals
5.5. Scalability and Transferability
5.6. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heracleous, C.; Michael, A.; Savvides, A.; Hayles, C. A Methodology to Assess Energy-Demand Savings and Cost-Effectiveness of Adaptation Measures in Educational Buildings in the Warm Mediterranean Region. Energy Reports 2022, 8, 5472–5486. [CrossRef]
- IPCC Climate Change 2022 - Mitigation of Climate Change; Cambridge University Press: Cambridge University Press: Cambridge, UK, 2023; ISBN 9781009157926.
- Hu, X.; Jaraitė, J.; Kažukauskas, A. The Effects of Wind Power on Electricity Markets: A Case Study of the Swedish Intraday Market. Energy Econ. 2021, 96, 105159. [CrossRef]
- Chipango, E.F. Why Do Capabilities Need Ubuntu? Specifying the Relational (Im)Morality of Energy Poverty. Energy Res. Soc. Sci. 2023, 96, 102921. [CrossRef]
- Galster, H.S.; Van der Wal, A.J.; Batenburg, A.E.; Koning, V.; Faaij, A.P.C. A Comprehensive Review of Integrating Behavioral Drivers of Technology Adoption and Energy Service Use in Energy System Models. Renewable and Sustainable Energy Reviews 2025, 214, 115520. [CrossRef]
- Jack, M.W.; Mirfin, A.; Anderson, B. The Role of Highly Energy-Efficient Dwellings in Enabling 100% Renewable Electricity. Energy Policy 2021, 158, 112565. [CrossRef]
- Li, Z.; Wu, B.; Wang, D.; Tang, M. Government Mandatory Energy-Biased Technological Progress and Enterprises’ Environmental Performance: Evidence from a Quasi-Natural Experiment of Cleaner Production Standards in China. Energy Policy 2022, 162, 112779. [CrossRef]
- Yang, X.; Wang, S.; He, Y. Review of Catalytic Reforming for Hydrogen Production in a Membrane-Assisted Fluidized Bed Reactor. Renewable and Sustainable Energy Reviews 2022, 154, 111832. [CrossRef]
- Biogas Development in Indonesia: Household Scale Evaluation of Indonesian Transition Pathways in Biogas Utilisation TRANSrisk Project; 2016;
- The World Bank. Access to Electricity (% of Population). World Development Indicators Database, World Bank Group; 2025. Available Online: Https://Data.Worldbank.Org/Indicator/EG.ELC.ACCS.ZS (Accessed on 16 May 2024).;
- International Energy Agency (IEA); World Bank Energy Sector Management Assistance Program (ESMAP). The State of Electricity Access Report (SEAR) 2017; World Bank: Washington, DC, USA, 2017.
- World Bank Clean Cooking Fund: Modern Energy Access; World Bank: Washington, DC, USA, 2024.
- Günther, A.; Engel, L.; Hornsey, M.J.; Nielsen, K.S.; Roy, J.; Steg, L.; Tam, K.-P.; van Valkengoed, A.M.; Wolske, K.S.; Wong-Parodi, G.; et al. Psychological and Contextual Determinants of Clean Energy Technology Adoption. Nature Reviews Clean Technology 2025, 1, 547–565. [CrossRef]
- Mutaqin, M.I.; Widyarani; Hamidah, U.; Janetasari, S.A.; Muchlis; Sintawardarni, N. Biogas Consumption Pattern in Indonesia : (A Case Study of Sumedang Community Biogas Plant, Indonesia). In Proceedings of the 2019 International Conference on Sustainable Energy Engineering and Application (ICSEEA); IEEE, October 2019; pp. 113–118.
- Indonesia Domestic Biogas Programme (BIRU) Indonesia Domestic Biogas Programme (BIRU): Report 2021; Yayasan Rumah Energi: Jakarta, Indonesia, 2022.
- SNV & Hivos Indonesia Domestic Biogas Programme–Annual Report 2023; Yayasan Rumah Energi: Jakarta, Indonesia, 2024.
- Wahyudi, J.; Kurnani, T.B.A.; Clancy, J. Biogas Production in Dairy Farming in Indonesia: A Challenge for Sustainability. International Journal of Renewable Energy Development 2015, 4, 219–226. [CrossRef]
- Badan Pusat Statistik (BPS) Populasi Hewan Ternak 2022–2023; Central Bureau of Statistics: Jakarta, Indonesia, 2023.
- Hivos & SNV Netherlands Development Organisation. Indonesia Domestic Biogas Program–Annual Report 2024; Biogas Rumah (BIRU): Jakarta, Indonesia, 2025.
- Pambudi, N.A.; Firdaus, R.A.; Rizkiana, R.; Ulfa, D.K.; Salsabila, M.S.; Suharno; Sukatiman Renewable Energy in Indonesia: Current Status, Potential, and Future Development. Sustainability (Switzerland) 2023, 15.
- Dinas Energi dan Sumber Daya Mineral Provinsi Jawa Barat. Jumlah Biogas Berdasarkan Kabupaten/Kota Di Jawa Barat (2020); Dinas Energi Dan Sumber Daya Mineral Provinsi Jawa Barat: Kota Bandung, Jawa Barat, 2020.;
- Praditya, A.; Abdilla, T.; Damayanti, A.H.; Marciano, I.; Simamora, P.; Mursanti, E.; Arinaldo, D.; Giwangkara, J.; Adiatma, J.C. Indonesia Clean Energy Outlook Tracking Progress and Review of Clean Energy Development in Indonesia; 2019;
- BADAN PUSAT STATISTIK NASIONAL INDONESIA Populasi Hewan Ternak , 2022-2023.
- Situmeang, R.; Mazancová, J.; Roubík, H. Technological, Economic, Social and Environmental Barriers to Adoption of Small-Scale Biogas Plants: Case of Indonesia. Energies (Basel). 2022, 15, 5105. [CrossRef]
- Ahmad Romadhoni Surya Putra, R.; Liu, Z.; Lund, M. The Impact of Biogas Technology Adoption for Farm Households – Empirical Evidence from Mixed Crop and Livestock Farming Systems in Indonesia. Renewable and Sustainable Energy Reviews 2017, 74, 1371–1378. [CrossRef]
- Langer, J.; Quist, J.; Blok, K. Review of Renewable Energy Potentials in Indonesia and Their Contribution to a 100% Renewable Electricity System. Energies (Basel). 2021, 14.
- Mata-Alvarez, J.; Macé, S.; Llabrés, P. Anaerobic Digestion of Organic Solid Wastes. An Overview of Research Achievements and Perspectives. Bioresour. Technol. 2000, 74, 3–16. [CrossRef]
- Mohamed Ali, A.; Alam, M.Z.; Mohamed Abdoul-latif, F.; Jami, M.S.; Gamiye Bouh, I.; Adebayo Bello, I.; Ainane, T. Production of Biogas from Food Waste Using the Anaerobic Digestion Process with Biofilm-Based Pretreatment. Processes 2023, 11, 655. [CrossRef]
- Rao, P.V.; Baral, S.S.; Dey, R.; Mutnuri, S. Biogas Generation Potential by Anaerobic Digestion for Sustainable Energy Development in India. Renewable and Sustainable Energy Reviews 2010, 14, 2086–2094. [CrossRef]
- Indonesia Domestic Biogas Programme ANNUAL REPORT;
- Bond, T.; Templeton, M.R. History and Future of Domestic Biogas Plants in the Developing World. Energy for Sustainable Development 2011, 15, 347–354. [CrossRef]
- Budya, H.; Yasir Arofat, M. Providing Cleaner Energy Access in Indonesia through the Megaproject of Kerosene Conversion to LPG. Energy Policy 2011, 39, 7575–7586. [CrossRef]
- Budiman, I.; Muthahhari, R.; Kaynak, C.; Reichwein, F.; Zhang, W. Multiple Challenges and Opportunities for Biogas Dissemination in Indonesia. Indonesian Journal of Energy 2018, 1. [CrossRef]
- Rakgase, M.A.; Norris, D. Determinants of Livestock Farmers’ Perception of Future Droughts and Adoption of Mitigating Plans. Int. J. Clim. Chang. Strateg. Manag. 2015, 7, 191–205. [CrossRef]
- Roubík, H.; Mazancová, J. Suitability of Small-Scale Biogas Systems Based on Livestock Manure for the Rural Areas of Sumatra. Environ. Dev. 2020, 33, 100505. [CrossRef]
- Vanvanhossou, S.F.U.; Dossa, L.H.; König, S. Sustainable Management of Animal Genetic Resources to Improve Low-Input Livestock Production: Insights into Local Beninese Cattle Populations. Sustainability 2021, 13, 9874. [CrossRef]
- Yu, W.; Yue, Y.; Wang, F. The Spatial-Temporal Coupling Pattern of Grain Yield and Fertilization in the North China Plain. Agric. Syst. 2022, 196, 103330. [CrossRef]
- Yasmin, N.; Grundmann, P. Adoption and Diffusion of Renewable Energy – The Case of Biogas as Alternative Fuel for Cooking in Pakistan. Renewable and Sustainable Energy Reviews 2019, 101, 255–264.
- Akter, S.; Kabir, H.; Akhter, S.; Hasan, Md.M. Assessment of Environmental Impact and Economic Viability of Domestic Biogas Plant Technology in Bangladesh. J. Sustain. Dev. 2021, 14, 44. [CrossRef]
- Landi, M.; Sovacool, B.K.; Eidsness, J. Cooking with Gas: Policy Lessons from Rwanda’s National Domestic Biogas Program (NDBP). Energy for Sustainable Development 2013, 17, 347–356. [CrossRef]
- Liebetrau, J.; Reinelt, T.; Agostini, A.; Linke, B.; Murphy, J.D.; IEA Bioenergy Programme; IEA Bioenergy Task 37. Methane Emissions from Biogas Plants : Methods for Measurement, Results and Effect on Greenhouse Gas Balance of Electricity Produced; ISBN 9781910154359.
- Sarker, S.A.; Wang, S.; Adnan, K.M.M.; Sattar, M.N. Economic Feasibility and Determinants of Biogas Technology Adoption: Evidence from Bangladesh. Renewable and Sustainable Energy Reviews 2020, 123. [CrossRef]
- Mengistu, M.G.; Simane, B.; Eshete, G.; Workneh, T.S. Factors Affecting Households’ Decisions in Biogas Technology Adoption, the Case of Ofla and Mecha Districts, Northern Ethiopia. Renew. Energy 2016, 93, 215–227. [CrossRef]
- Feder, G.; Umali, D.L. The Adoption of Agricultural Innovations: A Review. Technol. Forecast. Soc. Change 1993, 43, 215–239. [CrossRef]
- Appau, S.; Awaworyi Churchill, S.; Smyth, R.; Trinh, T.-A. The Long-Term Impact of the Vietnam War on Agricultural Productivity. World Dev. 2021, 146, 105613. [CrossRef]
- Watson, A. Designing Low Carbon Innovation Organisations: The Energy Technologies Institute Experience. Environ. Innov. Soc. Transit. 2021, 39, 173–190. [CrossRef]
- Nevzorova, T.; Kutcherov, V. Barriers to the Wider Implementation of Biogas as a Source of Energy: A State-of-the-Art Review. Energy Strategy Reviews 2019, 26, 100414. [CrossRef]
- Rahman, Md.S.; Majumder, M.K.; Sujan, Md.H.K. Adoption Determinants of Biogas and Its Impact on Poverty in Bangladesh. Energy Reports 2021, 7, 5026–5033. [CrossRef]
- Paramonova, K.; Mazancová, J.; Roubík, H. Dis-Adoption of Small-Scale Biogas Plants in Vietnam: What Is Their Fate? Environmental Science and Pollution Research 2023, 30, 2329–2339. [CrossRef]
- Annual Report 2018 Indonesia Domestic Biogas Program 2 Annual Report 2018 Indonesia Domestic Biogas Program;
- Rose, D.C.; Sutherland, W.J.; Barnes, A.P.; Borthwick, F.; Ffoulkes, C.; Hall, C.; Moorby, J.M.; Nicholas-Davies, P.; Twining, S.; Dicks, L. V. Integrated Farm Management for Sustainable Agriculture: Lessons for Knowledge Exchange and Policy. Land use policy 2019, 81, 834–842. [CrossRef]
- Walekhwa, P.N.; Mugisha, J.; Drake, L. Biogas Energy from Family-Sized Digesters in Uganda: Critical Factors and Policy Implications. Energy Policy 2009, 37, 2754–2762. [CrossRef]
- Mottaleb, K.A.; Rahut, D.B. Biogas Adoption and Elucidating Its Impacts in India: Implications for Policy. Biomass Bioenergy 2019, 123, 166–174. [CrossRef]
- Bappeda Provinsi Jawa Barat. West Java Provincial Spatial Planning Map (RTRW) 2024–2045: GIS-Based Thematic Maps; Government of West Java Province: Bandung, Indonesia, 2024.; 2024;
- Ammenberg, J.; Anderberg, S.; Lönnqvist, T.; Grönkvist, S.; Sandberg, T. Biogas in the Transport Sector—Actor and Policy Analysis Focusing on the Demand Side in the Stockholm Region. Resour. Conserv. Recycl. 2018, 129, 70–80. [CrossRef]
- Budiman, I. The Tangled Thread: Fragmentation of Biogas Governance in Indonesia; 2018;
- Vorley, W.; Porras, I.; Amrein, A. The Indonesia Domestic Biogas Programme: Can Carbon Financing Promote Sustainable Agriculture? 2015.
- Mwirigi, J.W.; Makenzi, P.M.; Ochola, W.O. Socio-Economic Constraints to Adoption and Sustainability of Biogas Technology by Farmers in Nakuru Districts, Kenya. Energy for Sustainable Development 2009, 13, 106–115. [CrossRef]
- Ullah, A.; Saqib, S.E.; Kächele, H. Determinants of Farmers’ Awareness and Adoption of Extension Recommended Wheat Varieties in the Rainfed Areas of Pakistan. Sustainability 2022, 14, 3194. [CrossRef]
- Tahir, F.; Rasheed, R.; Fatima, M.; Batool, F.; Nizami, A.-S. Sustainability Analysis of Commercial-Scale Biogas Plants in Pakistan vs. Germany: A Novel Analytic Hierarchy Process—SMARTER Approach. Sustainability 2025, 17, 2168. [CrossRef]
- Ali, S.; Yan, Q.; Razzaq, A.; Khan, I.; Irfan, M. Modeling Factors of Biogas Technology Adoption: A Roadmap towards Environmental Sustainability and Green Revolution. Environmental Science and Pollution Research 2022, 30, 11838–11860. [CrossRef]
- Shane, A.; Gheewala, S.H.; Kasali, G. Potential, Barriers and Prospects of Biogas Production in Zambia Sustainability Assessment of Bioomss for Energy Use in East Asia View Project Potential, Barriers and Prospects of Biogas Production in Zambia; 2015; Vol. 6;
- Kaygusuz, K. Energy for Sustainable Development: A Case of Developing Countries. Renewable and Sustainable Energy Reviews 2012, 16, 1116–1126. [CrossRef]
- Ali, J. Factors Affecting the Adoption of Information and Communication Technologies (ICTs) for Farming Decisions. Journal of Agricultural & Food Information 2012, 13, 78–96. [CrossRef]
- Chuang, J.H.; Wang, J.H.; Liou, Y.C. Farmers’ Knowledge, Attitude, and Adoption of Smart Agriculture Technology in Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 1–8. [CrossRef]
- Shallo, L.; Sime, G. Impacts of Biogas Technology Adoption on Rural Household Energy Expenditure in South Ethiopia. The Scientific World Journal 2025, 2025. [CrossRef]
- Abadi, N.; Gebrehiwot, K.; Techane, A.; Nerea, H. Links between Biogas Technology Adoption and Health Status of Households in Rural Tigray, Northern Ethiopia. Energy Policy 2017, 101, 284–292. [CrossRef]
- Hovmand, P.S. Community Based System Dynamics; Springer: New York, NY, USA, 2014. Springer 2014.
- Luna-Reyes, L.F.; A.D.L. Collecting and Analyzing Qualitative Data for System Dynamics: Methods and Models. Syst. Dyn. Rev. 2003, 19, 271–296.; 2003.
- Forrester, J.W. Industrial Dynamics—A Major Breakthrough for Decision Makers. Harv. Bus. Rev. 1958, 36, 37–66.
- Truc, N.T.T.; Nam, T.S.; Ngan, N.V.C.; Bentzen, J. Factors Influencing the Adoption of Small-Scale Biogas Digesters in Developing Countries – Empirical Evidence from Vietnam. International Business Research 2016, 10, 1. [CrossRef]
- Li, B.; Ding, J.; Wang, J.; Zhang, B.; Zhang, L. Key Factors Affecting the Adoption Willingness, Behavior, and Willingness-Behavior Consistency of Farmers Regarding Photovoltaic Agriculture in China. Energy Policy 2021, 149. [CrossRef]
- Mwirigi, J.; Balana, B.B.; Mugisha, J.; Walekhwa, P.; Melamu, R.; Nakami, S.; Makenzi, P. Socio-Economic Hurdles to Widespread Adoption of Small-Scale Biogas Digesters in Sub-Saharan Africa: A Review. Biomass Bioenergy 2014, 70, 17–25. [CrossRef]
- Getaneh, A.; Eba, K.; Tucho, G.T. Assessment of Biomass Energy Potential for Biogas Technology Adoption and Its Determinant Factors in Rural District of Limmu Kossa, Jimma, Ethiopia. Energies (Basel). 2024, 17, 2176. [CrossRef]
- Fernandes, A.A.T.; Filho, D.B.F.; da Rocha, E.C.; da Silva Nascimento, W. Read This Paper If You Want to Learn Logistic Regression. Revista de Sociologia e Politica 2020, 28, 1/1-19/19. [CrossRef]
- Matin, H.H.A.; W.J.; R.G.; et al Distribution Mapping and Accessibility Analysis of Biogas Digester Units Using Spatial Analysis Methods in Central Java, Indonesia. E3S Web Conf. 2025, 50, 01013.
- Hu, Y.; Cheng, H.; Tao, S. Environmental and Human Health Challenges of Industrial Livestock and Poultry Farming in China and Their Mitigation. Environ. Int. 2017, 107, 111–130. [CrossRef]
- Eichsteller, M.; Njagi, T.; Nyukuri, E. The Role of Agriculture in Poverty Escapes in Kenya – Developing a Capabilities Approach in the Context of Climate Change. World Dev. 2022, 149, 105705. [CrossRef]
- Darnhofer, I.; Lamine, C.; Strauss, A.; Navarrete, M. The Resilience of Family Farms: Towards a Relational Approach. J. Rural Stud. 2016, 44, 111–122. [CrossRef]
- Bedi, A.S.; Sparrow, R.; Tasciotti, L. The Impact of a Household Biogas Programme on Energy Use and Expenditure in East Java. Energy Econ. 2017, 68, 66–76. [CrossRef]
- Bößner, S.; Devisscher, T.; Suljada, T.; Ismail, C.J.; Sari, A.; Mondamina, N.W. Barriers and Opportunities to Bioenergy Transitions: An Integrated, Multi-Level Perspective Analysis of Biogas Uptake in Bali. Biomass Bioenergy 2019, 122, 457–465. [CrossRef]
- Hasan, M.H.; Mahlia, T.M.I.; Nur, H. A Review on Energy Scenario and Sustainable Energy in Indonesia. Renewable and Sustainable Energy Reviews 2012, 16, 2316–2328. [CrossRef]
| Indicator | Indonesia | Southeast Asia (Regional Average / ASEAN) | Source |
| Access to electricity (% of population) | 99-100% | 90% | World Bank WDI – Access to electricity (% of population) [10] |
| Access to clean cooking fuels (% of population) | 80–90% | 60–70% | World Bank WDI – Clean fuels indicator [10] |
| Household reliance on traditional biomass (solid fuels) | 26% | 40% | OECD/IEA regional report (2017) [10,11] |
| Renewable energy share in final energy consumption (includes bioenergy) | 12–15% | 23% | World Bank WDI; IRENA report [10,11,12] |
| Fuel type |
Estimated GHG Emissions (CO₂-eq per year) |
| Firewood | 122.5 t CO₂ eq annual (for sample households) |
| Cow dung | 47.3 t CO₂ eq annual (for sample households) |
| Biogas | 1.9 t CO₂ eq annual (net emission per biogas unit) |
| Variable | Type | Description | Operationalization | Sign | Justification |
| X1 Age | Continuous (centered, scaled) | Age of household head (years) | (Age – mean)/SD | ± | Mixed: younger HH heads more open to innovation, older may have resources but risk-aversion. |
| X2 Gender | Categorical | Gender of household head (male =1, female =0) | Dummy | + | Male heads more likely to control resources; but female-led HH may value timesaving strongly. |
| X3 Family size | Continuous (centered, scaled) | Number of household members | Raw count, standardized | + | Larger HH consume more energy → higher incentive to adopt biogas. |
| X4 Education | Continuous (years of schooling) | Years of formal schooling of household head | Centered/scaled | ± | Theory: higher education improves technology uptake; empirical (West Java) showed negative due to LPG substitution. |
| X5 Household income | Continuous (annual, million Rupiah) | Annual HH income | Log-transformed | + | Higher income eases upfront investment and maintenance costs. |
| X6 Electricity access | Categorical | Access to grid electricity (1=yes, 0=no) | Dummy | – | Grid electricity/LPG access can substitute biogas → reduces adoption probability. |
| X7 Fuel-cost pressure | Categorical | Household perceives fuel costs as high | Dummy (1=yes) | + | Strong predictor: high fuel burden motivates biogas adoption. |
| X8 Livestock ownership | Continuous (cow equivalents) | Number of cattle owned | Centered/scaled | + | Provides feedstock for biogas; but diminishing returns if herd size too large. |
| X9 Timesaving | Categorical | Household reports time saved due to biogas | Dummy (1=yes) | + | Major driver; particularly valued by women (fuelwood collection, cooking). |
| X10 Training on biogas technology | Categorical | Hands-on training received in last 24 months | Dummy (1=yes) | + | Increases technical knowledge, reduces digester failure risk, improves adoption odds. |
| Variable | Coefficient (β) | Odds Ratio (OR) | Std. Error | z-value | p-value | Significance |
| Constant | –3.212 | — | 0.88 | –3.64 | <0.001 | *** |
| Livestock ownership (TLU) | 0.684 | 1.98 | 0.21 | 3.25 | 0.001 | *** |
| Training participation (1 = yes) | 1.247 | 3.48 | 0.34 | 3.65 | <0.001 | *** |
| Perceived time-saving benefit | 0.593 | 1.81 | 0.18 | 3.29 | 0.001 | *** |
| Fuel-cost pressure | 0.441 | 1.55 | 0.15 | 2.94 | 0.003 | ** |
| Education (years) | 0.067 | 1.07 | 0.05 | 1.34 | 0.181 | ns |
| Household income (IDR million/month) | 0.014 | 1.01 | 0.02 | 0.62 | 0.534 | ns |
| Household size | 0.112 | 1.12 | 0.10 | 1.12 | 0.262 | ns |
| Landholding (m²) | 0.00003 | 1.00 | 0.00 | 1.01 | 0.311 | ns |
| Electricity access (1 = yes) | 0.185 | 1.20 | 0.39 | 0.47 | 0.639 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
