Submitted:
29 January 2026
Posted:
30 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction – Conceptual Overview
- First, we address how we may reconcile the recent solid examples of ‘Soft’ or reversible epigenetic acquired inheritance and contrast it with other historical evidence of apparently stable DNA integrated, or what we hereafter refer to as ‘Hard’ Lamarckian transgenerational acquired inheritance (Section 2).
- Second, we analyse more critically the ‘reversible’ interpretative aspects of current epigenetic inheritance breeding experiments. We show that these fall short of an adequate explanation of what is observed, which could be stable (‘Hard’) Lamarckian inheritance (Section 3).
- We then propose that ‘Hard’ Lamarckian inheritance may require forms of inbreeding and inter-breeding among putative phenotypically affected offspring populations coupled to sustained specific ‘environmental stimulation’ and selection acting over more than one a generation to lock-in a ‘Hard’ inheritance phenomenon (Section 4).
- Next, we transition to RNA back to DNA feedback loops as current known molecular mechanisms in the immune system and cancer progression at immunoglobulin (Ig) and non-Ig loci in Section 5, Section 6 and Section 7. These sections provide solid evidence that somatic donor nucleic acids (mainly RNAs both short and long), following target genetic loci recognition, can integrate into their target DNA base sequences and replace them by a RNA-templated homologous recombination process involving the ubiquitous DNA repair enzyme DNA polymerase eta (viz. TSRT) both in the nuclear genome of both somatic cells and in the germline genome of reproductive cells, ova and spermatozoa.
- Finally, in Section 8 and Section 9 we analyse at more depth known diversification mechanisms in molecular and cellular immunology and discuss the now routine deployment by the Watson group and the Collins group of innovative single molecule real time (SMRT) long read (6-8 Kb) genomic sequencing and assembly of large, highly repetitive, loci of similar sequences. As demonstrated for the human 1 Mb IGHV haplotype region, this can now be performed with 100% accuracy to nucleotide resolution, a feat not hitherto possible by current short read 300 bp NGS genomic sequencing. This detailed discussion is very revealing and can provide future breeding programs with the technical-genetic tools and intellectual strategies needed to secure compelling evidence demonstrating Lamarckian acquired inheritance.
2. ‘Epigenetic- Genetic Coupling’ and Transition from ‘Soft’ to ‘Hard’ Lamarckian Inheritance
3. ‘Critique of the ‘Reversible’ Interpretative Aspects of Current Epigenetic Inheritance Demonstrations
4. ‘Hard Lamarckian Inheritance may Obligatorily Require Forms of Inbreeding Among Affected Progeny Populations Including Sustained Stimulation by Endogenous and Exogenous Signals
4.1. Low and High Serum Antibody Responses Starting with Foundation Random Bred Swiss White Mice
4.2. Chemically Induced Alloxan Diabetes in Laboratory Rats and Other Small Animals
4.3. Inheritance of Autoimmunity Induced Eye Defects Caused by Anti-Eye Lens Immune Responses in Progeny of Immunized Pregnant Mothers with Eye Lens Self-Antigens
5. Lessons for Future Lamarckian Breeding Programs
6. Reflection on Other Historical Acquired Inheritance Experiments and Observations Involving Paternal Influence, the Sire Effect and Maternal Influence
7. A General Mechanism for Donor Nucleic Acid Recognition and Integration of Target DNA Base Sequences
7.1. What is a Likley Recognition Step in the Stochastic Search for the Target DNA Sequence in Epigentically Opened and Accessible Chromatin?
7.2. A Proposed General RNA-Templated Reverse Transcriptase Mechanism for Targetd Integration of Donor Sequence by Homologous Recombination into Somatic Cell or Germ Cell Sequence Loci
8. Basic Immunology-Anapproach to Acquired Inheritance Breeding Programs to Secure Hard Lamarckian DNA Sequence Evidence
9. Long Read DNA Sequencing and Analysis of Immunoglobulin (Ig) and T Cell Receptor (TCR) Large Germline Arrays in ≥ 1 Mb Range
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Spadafora, C. Sperm cells and foreign DNA: a controversial relation. Bioessays 1998, 20, 955–964. Available online: https://pubmed.ncbi.nlm.nih.gov/9872062/DOI. [CrossRef]
- Spadafora, C. The “evolutionary field” hypothesis. Non-Mendelian trans-generational inheritance mediates diversification and evolution. Prog. Biophys.Mol. Biol. 2018, 134, 27–37. Available online: https://pubmed.ncbi.nlm.nih.gov/29223657/. [CrossRef]
- Cossetti, C.; Lugini, L.; Astrologo, L.; Saggio, I.; Fais, S.; Spadafora, C. Soma-to-Germline transmission of RNA in mice xenografted with human tumour cells: possible transport by exosomes. PLoS One 2014, 9(7), e101629. Available online: https://pubmed.ncbi.nlm.nih.gov/24992257/DOI. [CrossRef]
- Rassoulzadegan, M.; Grandjean, V.; Gounon, P.; Vincent, S.; Gillot, I.; Cuzin, F. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 2006, 441, 469–474. Available online: https://pubmed.ncbi.nlm.nih.gov/16724059/. [CrossRef]
- Liebers, R.; Rassoulzadegan, M.; Lyko, F. Epigenetic regulation by heritableRNA. PLoS Genet. 2014, 10, e1004296. Available online: https://pubmed.ncbi.nlm.nih.gov/24743450/DOI. [CrossRef] [PubMed]
- Dias, B.G.; Ressler, K.J. Parental olfactory experience influences behaviour and neural structure in subsequent generations. Nat. Neurosci. 2014, 17, 89–96. Available online: https://pubmed.ncbi.nlm.nih.gov/24292232/DOI. [CrossRef] [PubMed]
- Dias, B.G.; Maddox, S.; Klengel, T.; Ressler, K.J. Epigenetic mechanisms underlying learning and the inheritance of learned behaviours. Trends Neurosci. 2015, 38, 96–107. Available online: https://pubmed.ncbi.nlm.nih.gov/25544352/. [CrossRef]
- Conine, C.C.; Rando, O.J. Soma-to-germline RNA communication. Nat Rev Genet 2022, 23(2), 73–88. Available online: https://pubmed.ncbi.nlm.nih.gov/34545247/. [CrossRef]
- Sharma, U. Paternal Contributions to Offspring Health: Role of Sperm Small RNAs in Intergenerational Transmission of Epigenetic Information. Front Cell Dev Biol 2019, 7, 215. Available online: https://pubmed.ncbi.nlm.nih.gov/31681757/DOI. [CrossRef]
- van Steenwyk, G.; Roszkowski, M.; Manuella, F.; Franklin, T.B.; Mansuy, I.M. Transgenerational inheritance of behavioral and metabolic effects of paternalexposure to traumatic stress in early postnatal life: evidence in the 4th generation. Environ. Epigenet 2018, 4, dvy023. Available online: https://pubmed.ncbi.nlm.nih.gov/30349741/. [CrossRef] [PubMed]
- van Steenwyk, G.; Gapp, K.; Jawaid, A.; Geremain, P-L.; Manuella, F.; Tanwar, D.K.; Zamboni, N.; Gaur, N.; Efimova, A.; Thumfart, K.M.; et al. Involvement of circulating factors in the transmission of paternal experiences through the germline. EMBO J. 2020, 39, e104579. Available online: https://pubmed.ncbi.nlm.nih.gov/33034389/. [CrossRef]
- Gapp, K.; van Steenwyk, G.; Germain, P.L.; Matsushima, W.; Rudolph, K.L.M.; Manuella, F.; Roszkowski, M.; Vernaz, G.; Chosh, T.; et al. Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma. Mol Psychiatry 2020, 25, 2162–2174. Available online: https://pubmed.ncbi.nlm.nih.gov/30374190/. [CrossRef] [PubMed]
- Boscardin, C; Manuella, F.; Mansuy, I.M. Paternal transmission of behavioural and metabolic traits induced by postnatal stress to the 5th generation in mice. Environ Epigenet 2022, 8(1), dvac024. Available online: https://pubmed.ncbi.nlm.nih.gov/36518875/. [CrossRef]
- Mattick, J.S. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays 2003, 25, 930–939. Available online: https://pubmed.ncbi.nlm.nih.gov/14505360/. [CrossRef]
- Mattick, J.S. The State of long non-coding RNA biology. Non-coding RNA 2018, 4, 17. Available online: https://pubmed.ncbi.nlm.nih.gov/30103474/. [CrossRef]
- Buske, F.A.; Mattick, J.S.; Bailey, T.L. Potential in vivo roles of nucleic acidtriple-helices. RNA Biol. 2011, 8, 427–439. Available online: https://pubmed.ncbi.nlm.nih.gov/21525785/. [CrossRef]
- Buske, F.A.; Bauer, D.C.; Mattick, J.S.; Bailey, T.L. Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res. 2012, 22, 1372–1381. Available online: https://pubmed.ncbi.nlm.nih.gov/22550012/. [CrossRef]
- Smith, M.A.; Seemann, S.E.; Quek, X.C.; Mattick, J.S. DotAligner: Identification and clustering of RNA structure motifs. Genome Biol. 2017, 18, 244. Available online: https://pubmed.ncbi.nlm.nih.gov/29284541/. [CrossRef] [PubMed]
- Watson, C.T.; Steinberg, K.M.; Huddleston, J.; Warren, R.L.; Malig, M.; Schein, J.; Willsey, A.J.; Joy, J.B.; Scott, J.K.; Graves, T.A.; et al. Complete haplotype sequence of the human immunoglobulin heavy-chain variable, diversity, and joining genes and characterization of allelic and copy-number variation. Am J Hum Genet. 2013, 92, 530–546. Available online: https://pubmed.ncbi.nlm.nih.gov/23541343/. [CrossRef] [PubMed]
- Rodriguez, O.L.; Gibson, W.S.; Parks, T.; Emery, M.; Powell, J.; Strahl, M.; Deikus, G.; Auckland, K.; Eichler, E.E.; Marasco, W.A. A Novel Framework for Characterizing Genomic Haplotype Diversity in the Human Immunoglobulin Heavy Chain Locus. Front Immunol. 2020, 11, 2136. Available online: https://pubmed.ncbi.nlm.nih.gov/33072076/. [CrossRef]
- Rodriguez, O.L.; Silver, C.A.; Shields, K.; Smith, M.L.; Watson, C.T. Targeted long-read sequencing facilitates phased diploid assembly and genotyping of the human T cell receptor alpha, delta, and beta loci. Cell Genom. 2022, 2, 100228. Available online: https://pubmed.ncbi.nlm.nih.gov/36778049/. [CrossRef]
- Rodriguez, O.L.; Safonova, Y.; Silver, C.A.; Shields, K.; Gibson, W.S.; Kos, J.T.; Tieri, D.; Ke, H.; Jackson, J.L.; Boyd, S.D.; et al. Genetic variation in the immunoglobulin heavy chain locus shapes the human antibody repertoire. Nat Commun. 2023, 14, 4419. Available online: https://pubmed.ncbi.nlm.nih.gov/37479682/. [CrossRef]
- Gibson, W.S.; Rodriguez, O.L.; Sheilds, K.; Silver, C.A.; Dorgham, A.; Emery, M.; Deikus, G.; Sebra, R.; Eichler, E.E.; Bashir, A.; Smith, M.L.; Watson, C.T. Characterization of the immunoglobulin lambda chain locus from diverse populations reveals extensive genetic variation. Genes Immun. 2023, 24, 21–31. Available online: https://pubmed.ncbi.nlm.nih.gov/36539592/. [CrossRef]
- Engelbrecht, E.; Rodriguez, O.L.; Shields, K.; Schultze, S.; Tieri, D.; Jana, U.; Yaari, G.; Lees, W.D.; Smith, M.L.; Watson, C.T. Resolving haplotype variation and complex genetic architecture in the human immunoglobulin kappa chain locus in individuals of diverse ancestry. Genes Immun. 2024, 25, 297–306. Available online: https://pubmed.ncbi.nlm.nih.gov/38844673/. [CrossRef] [PubMed]
- Engelbrech, E.; Rodriguez, O.L.; Lees, W.; Vanwinkle, Z.; Shields, K.; Schultze, S.; Gibson, W.S.; Smith, D.R.; Uddalok, J.; et al. Germline polymorphisms in the immunoglobulin kappa and lambda loci explain variation in the expressed light chain antibody repertoire. Res Sq [Preprint] 2025, rs.3.rs–6994086. Available online: https://pubmed.ncbi.nlm.nih.gov/40709274/. DOI. [CrossRef]
- Gornitzka, M.B.; Rosjo, E.; Jan, U.; Ford, E.E.; Tourancheau, A.; Lees, W.D.; Vanwinkle, Z.; Smith, M.L.; Watson, C.T.; Lossius, A. Ultra-long sequencing for contiguous haplotype resolution of the human immunoglobulin heavy-chain locus. Genome Res. 2025, 35, 2240–2251. Available online: https://pubmed.ncbi.nlm.nih.gov/40841171/. [CrossRef] [PubMed]
- Jana, U.; Rodriguez, O.L.; Lees, W.; Engelbrecht, E.; Vanwinkle, Z.; Peres, A.; Gibson, W.S.; Sheilds, K.; Schultze, S.; Dorgham, A.; Emery, M. The human IG heavy chain constant gene locus is enriched for large structural variants and coding polymorphisms that vary among human populations. Cell Genom 2025, 101058. Available online: https://pubmed.ncbi.nlm.nih.gov/41151584/. [CrossRef]
- Lees, W.D.; Peres, A.; Klein, V.; Amos, N.; Jana, U.; Engelbrech, E.; Vanwinkle, Z.; Malach, Y.; Konstantinovsky, T.; Polak, P.; et al. The current landscape of adaptive immune receptor genomic and repertoire data: OGRDB and VDJbase. Nucleic Acids Res. 2025, 6, gkaf1094. Available online: https://pubmed.ncbi.nlm.nih.gov/41206474/. [CrossRef] [PubMed]
- Rodriguez, O.L.; Qiu, X.; Shields, K.; Dunn, C.; Singh, A.; Kaileh, M.; Watson, C.T.; Sen, R. Human genetic variation shapes the antibody repertoire across B cell development. Non peer-reviewed reviewed Pre-Print. 2025. [Google Scholar] [CrossRef]
- Gaeta, B.A.; Malming, H.R.; Jackson, K.J.L.; Bain, M.E.; Wilson, P.; Collins, A.M. IHMMune-align: hidden Markov model-based alignment and identification of germline genes in rearranged immunoglobulin gene sequences. Bioinformatics 2007, 23, 1580–1587. Available online: https://pubmed.ncbi.nlm.nih.gov/17463026/. [CrossRef]
- Boyd, S.D.; Gaeta, B.A.; Jackson, K.J.; Fire, A.Z.; Marshall, E.L.; Merker, J.D.; Maniar, J.M.; Zhang, L.N.; Sahaf, B.; Jones, C.D.; et al. Individual variation in the germline Ig gene repertoire inferred from variable region gene rearrangements. J Immunol 2010, 184, 6986–6992. Available online: https://pubmed.ncbi.nlm.nih.gov/20495067/. [CrossRef]
- Kidd, M.J.; Chen, Z.; Wang, Y.; Jackson, K.J.; Zhang, L.; Boyd, S.D.; Fire, A.Z.; Tanaka, M.M.; Gaeta, B.A.; Collins, A.M. The inference of phased haplotypes for the immunoglobulin H chain V region gene loci by analysis of VDJ gene rearrangements. J Immunol. 2012, 188, 1333–1340. Available online: https://pubmed.ncbi.nlm.nih.gov/22205028/. [CrossRef]
- Collins, A.M.; Wang, Y.; Roskin, K.M.; Marquis, C.P.; Jackson, K.L. The mouse antibody heavy chain repertoire is germline-focused and highly variable between inbred strains. Philos Trans R Soc Lond B Biol Sci. 2015, 370(1676), 20140236. Available online: https://pubmed.ncbi.nlm.nih.gov/26194750/. [CrossRef] [PubMed]
- Jackson, K.J.L.; Kos, J.T.; Lees, W.; Gibson, W.S.; Smith, M.L.; Peres, A.; et al. A BALB/c IGHV Reference Set, Defined by Haplotype Analysis of Long-Read VDJ-C Sequences From F1 (BALB/c x C57BL/6) Mice. Front Immunol. 2022, 13, 888555. Available online: https://pubmed.ncbi.nlm.nih.gov/35720344/. [CrossRef] [PubMed]
- Collins, A.M.; Ohlin, M.; Corcoran, M.; Heather, J.M.; Ralph, D.; Law, M.; Martínez-Barnetche, J.; Ye, J.; Richardson, E.; Gibson, W.S.; et al. AIRR-C IG Reference Sets: curated sets of immunoglobulin heavy and light chain germline genes. Front Immunol. 2024, 14, 1330153. Available online: https://pubmed.ncbi.nlm.nih.gov/38406579/. [CrossRef]
- Steele, E.J.; Gorczynski, R.M.; Lindley, R.A.; Liu, Y.; Temple, R.; Tokoro, G.; Wickramasinghe, D.T.; Wickramasinghe, N.C. Lamarck and Panspermia - On the Efficient Spread of Living Systems Throughout the Cosmos”. Prog. Biophys. Mol. Biol. 2019, 149, 10–32. Available online: https://pubmed.ncbi.nlm.nih.gov/31445944/. [CrossRef] [PubMed]
- Painter, R.; Osmond, C.; Gluckman, P.; Hanson, M.; Phillips, D.; Roseboom, T. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 2008, 115, 1243–1249. Available online: https://pubmed.ncbi.nlm.nih.gov/18715409/. [CrossRef]
- Katzmarski, N.; Dominguez-Andres, J.; Cirovic, B.; Renieris, G.; Ciarlo, E.; Le Roy, D.; Lepikhov, K.; Kattler, K.; Gasparoni, G.; Handler, K.; et al. Transmission of trained immunity and heterologous resistance to infections across generations. Nat Immunol. 2021, 22, 1382–1390. Available online: https://pubmed.ncbi.nlm.nih.gov/34663978/. [CrossRef]
- Patil, N.D.; Turner, J.D.; Desai, M.S.; Zimmer, J. Trained through generations. Cell Mol Immunol 2022, 19, 653–654. Available online: https://pubmed.ncbi.nlm.nih.gov/35277673/. [CrossRef]
- Kaufmann, E.; Landekic, M.; Downey, J.; Chronopoulos, J.; Nezhad, S.T.; Tran, K.; Vinh, D.C.; Barreiro, L.B.; Divangahi, M. Lack of evidence for intergenerational inheritance of immune resistance to infections. Nat. Immunol. 2022, 23, 203–207. Available online: https://pubmed.ncbi.nlm.nih.gov/35058614/. [CrossRef]
- Steele, E.J. Somatic Selection and Adaptive Evolution: On the Inheritance of Acquired Characters; Williams-Wallace: Toronto, 1979. [Google Scholar]
- Steele, E.J. Somatic Selection and Adaptive Evolution: On the Inheritance of Acquired Characters; 2nd Edition Revised with Postscript; University of Chicago Press: Chicago, 1981. [Google Scholar]
- Steele, E. J. Idiotypes, Allotypes and a Paradox of Inheritance. Chapter 22 p. 243-252 In “Paradoxes in Immunology”; Hoffman, Geoffrey W., Levy, Julia G., Nepom, Gerald T., Eds.; CRC Press, Inc.: Boca Raton, Florida, 1986; Available online: https://www.academia.edu/36373935/IDIOTYPES_ALLOTYPES_AND_A_PARADOX_OF_INHERITANCE_In_Paradoxes.
- Steele, E.J. Origin of congenital defects: stable inheritance through the male line via maternal antibodies specific for eye lens antigens inducing autoimmune eye defects in developing rabbits in utero. In Ahead of the Curve -Hidden Breakthroughs in the Biosciences Chapter 3; Levin, M., Adams, D.S., Eds.; Michael Levin and Dany Spencer Adams IOP Publishing Ltd 2016: Bristol, UK; Available online: https://www.academia.edu/31360412/Steele_2016_Guyer_and_Smith_Expts_Ed_M_Levin_and_Dany_Adams_2016_Ahead_of_the_Curve_pdf.
- Blanden, R.V.; Rothenfluh, H.S.; Zylstra, P.; Weiller, G.F.; Steele, E.J. The signature of somatic hypermutation appears to be written into the germline IgV segment repertoire. Immunol. Rev. 1998, 162, 117–132. Available online: https://pubmed.ncbi.nlm.nih.gov/9602358/. [CrossRef]
- Steele, E.J.; Lindley, R.A.; Blanden, R.V. Lamarck’s Signature: How retrogenes are changing Darwin’s natural selection paradigm Allen & Unwin; Frontiers of Science: Series Editor Paul Davies: Sydney, Australia, 1998. [Google Scholar]
- Steele, E.J.; Lindley, R.A. Germline V repertoires: Origin, maintenance, diversification. Scand J Immunol 2018, 87, e12670. Available online: https://pubmed.ncbi.nlm.nih.gov/29706014/. [CrossRef]
- Steele, E.J.; Lindley, R.A. Regulatory T cells and co-evolution of allele specific MHC recognition by the TCR. Scand J Immunol. 2019, 91, e12853. Available online: https://pubmed.ncbi.nlm.nih.gov/31793005/. [CrossRef]
- Campbell, J.H.; Perkins, P. Transgenerational effects of drug and hormonal treatments in mammals: a review of observations and ideas. Progress in Brain Research 1988, 73, 535–553. Available online: https://pubmed.ncbi.nlm.nih.gov/3047810/. [CrossRef] [PubMed]
- Lindley, R. The Soma: How Our Genes Really Work and How that Changes Everything! CYO Foundation. POD book; CreateSpace, Amazon.com, 2010; ISBN 1451525648. [Google Scholar]
- Goldner, M.G.; Spergel, G. On the transmission of alloxan diabetes and other diabetogenic influences. Adv. Metab. Disord. 1972, 60, 57–72. Available online: https://pubmed.ncbi.nlm.nih.gov/4581901/. [CrossRef]
- Okamoto, K. Apparent transmittance of factors to offspring by animals with experimental diabetes”. In On the Nature and Treatment of Diabetes Liebe BS Exerpta Med.; Wrenshall, G.A., Ed.; Amsterdam, 1985; Volume 6, pp. 627–637. [Google Scholar]
- Skinner, M.K. Environmental epigenetics and a unified theory of the molecular aspects of evolution: a neo-Lamarckian concept that facilitates neo-Darwinian evolution. Genome Biol. Evol. 2015, 7, 1296–1302. Available online: https://pubmed.ncbi.nlm.nih.gov/25917417/. [CrossRef]
- Phillips, D.; Noble, D. Bubbling beyond the barrier: exosomal RNA as a vehicle for soma-germline communication. J Physiol. 2024, 602, 2547–2563. Available online: https://pubmed.ncbi.nlm.nih.gov/37936475/. [CrossRef]
- Jablonka, E.; Lamb, M.J. Epigenetic Inheritance and Evolution: The Lamarckian Dimension; Oxford University Press: Oxford, 1995. [Google Scholar]
- Fogarty, P. Optimizing the production of animal models for target and lead validation. Targets 2002, 1(3), 109–116. [Google Scholar] [CrossRef]
- Mamrot, J.; Balachandran, S.; Steele, E.J.; Lindley, RA. Molecular model linking Th2 polarized M2 tumour-associated macrophages with deaminase-mediated cancer progression mutation signatures. Scan J Immunol 2019, 89, e12760. Available online: https://www.ncbi.nlm.nih.gov/pubmed/30802996. [CrossRef]
- Xie, Y.; Dang, W.; Zhang, S.; Yue, W.; Yang, L.; Zhai, X.; Yan, Q.; Lu, J. The role of exosomal noncoding RNAs in cancer. Mol. Cancer 2019, 18, 37. Available online: https://pubmed.ncbi.nlm.nih.gov/30849983/. [CrossRef] [PubMed]
- Lindley, R.A. The importance of codon context for understanding the Ig-like somatic hypermutation strand-biased patterns in TP53 mutations in breast cancer. Cancer Genet. 2013, 206, 222–226. Available online: https://pubmed.ncbi.nlm.nih.gov/23880211/. [CrossRef]
- Lindley, R.A. Review of the mutational role of deaminases and the generation of a cognate molecular model to explain cancer mutation spectra. Med. Res. Arch. 2020, 8, 2177. Available online: https://esmed.org/MRA/mra/article/view/2177. [CrossRef]
- Lindley, R.A.; Hall, N.E. APOBEC and ADAR deaminases may cause many single nucleotide polymorphisms curated in the OMIM database. Mutat. Res. 2018, 810, 33–38. Available online: https://pubmed.ncbi.nlm.nih.gov/29957488/. [CrossRef] [PubMed]
- Steele, E.J.; Lindley, RA. Deaminase-Driven Reverse Transcription Mutagenesis in Oncogenesis: Critical Analysis of Transcriptional Strand Asymmetries of Single Base Substitution Signatures. Int. J. Mol. Sci. 2025, 26, 989. Available online: https://pubmed.ncbi.nlm.nih.gov/39940758/. [CrossRef] [PubMed]
- Zheng, Y.C.; Lorenzo, C.; Beal, P.A. DNA Editing in DNA/RNA hybrids by adenosine deaminases that act on RNA. Nucleic Acids Res. 2017, 45, 3369–3377. Available online: https://pubmed.ncbi.nlm.nih.gov/28132026/. [CrossRef]
- Luan, D.D.; Korman, M.H.; Jakubczak, J.L.; Eichbush, T.H. Reverse transcription of R2B mRNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition. Cell 1993, 72, 595–605. Available online: https://pubmed.ncbi.nlm.nih.gov/7679954/. [CrossRef]
- Basu, U.; Meng, F.-L.; Keim, C.; Grinstein, V.; Pefanus, E.; Eccleston, J.; Zhang, T.; Myers, D.; Wasserman, C.R.; Wesemann, D.R.; et al. The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell 2011, 144, 353–363. Available online: https://pubmed.ncbi.nlm.nih.gov/21255825/. [CrossRef]
- Steele, E.J.; Franklin, A. Lindley RA Somatic mutation patterns at Ig and Non-Ig Loci. DNA Repair 2024, 133, 103607. Available online: https://pubmed.ncbi.nlm.nih.gov/38056368/. [CrossRef]
- Simpson, G.G. The Baldwin Effect. In Evolution; Society for the Study of Evolution. Stable, 1953; Volume 7, pp. 110–117. Available online: http://www.jstor.org/stable/2405746.
- Ho, D. H.; Burggren, W. W. Epigenetics and transgenerational transfer: a physiological perspective J. Exp. Biol 2010, 213, 3–16. Available online: https://pubmed.ncbi.nlm.nih.gov/20008356/. [CrossRef] [PubMed]
- Patil, N.D.; Turner, J.D.; Desai, M.S.; Zimmer, J. Trained through generations. Cell Mol Immunol 2022, 19, 653–654. Available online: https://pubmed.ncbi.nlm.nih.gov/35277673/. [CrossRef]
- Rito, T.; Vierira, D.; Silva, M.; Conde-Sousa, E.; Pereira, L.; Mellars, P.; Richards, M.B.; Soares, P. A dispersal of Homo sapiens from southern to eastern Africa immediately preceded the out-of-Africa migration. Sci Rep. 2019, 9, 4728. Available online: https://pubmed.ncbi.nlm.nih.gov/30894612/. [CrossRef]
- Abbas, M.; Lai, Z.; Jansen, J.D.; Tu, H.; Alqudah, M.; Xu, X.; Al-Saqarat, B.S.; Hseinat, M.A.; Ou, X.; Petraglia, M.D.; Carling, P.A. Human dispersals out of Africa via the Levant. Sci Adv. 2023, 9, eadi6838. Available online: https://pubmed.ncbi.nlm.nih.gov/37792942/. [CrossRef]
- Bergson, H. Creative Evolution. 1907. Dover Publications 1998. Unabridged reproduction of translation by Arthur Mitchell. 1911 Henry Holt and Company, New York.
- Biozzi, G.; Mouton, D.; Sant’Anna, O. A.; Possos, H. C.; Gennasi, M.; Reis, M. H.; Ferreira, V. C. A.; Heumann, A. M.; Bouthillier, Y.; Ibancz, O. M.; Stiffel, C.; Siqueira, M. Genetics of immunoresponsiveness to natural antigens in the mouse. Curr Top Microbiol Immunol 1979, 85, 31–98. Available online: https://pubmed.ncbi.nlm.nih.gov/90582/. [PubMed]
- Eichmann, K.; Kindt, T.J. The Inheritance of Individual Antigenic Specificities of Rabbit Antibodies to Streptococcal Carbohydrates. J. Exp. Med. 1971, 134, 532–552. Available online: https://pubmed.ncbi.nlm.nih.gov/4104426/. [CrossRef] [PubMed]
- Gorczynski, R.M.; Steele, E.J. Inheritance of acquired immunologic tolerance to foreign histocompatibility antigens in mice. Proc. Natl. Acad. Sci. (USA) 1980, 77, 2871–2875. [Google Scholar] [CrossRef]
- Gorczynski, R.M.; Steele, E.J. Simultaneous yet independent inheritance of somatically acquired tolerance to two distinct H-2 antigenic haplotype determinants in mice. Nature 1981, 289, 678–681. [Google Scholar] [CrossRef] [PubMed]
- Steele, E. J. Observations on offspring of mice made diabetic with streptozocin. Diabetes 1988, 37. 1035–1043. [Google Scholar] [CrossRef]
- Guyer, M. F.; Smith, E. A. Studies on cytolysins I Some prenatal effects of lens antibodies J. Expt. Zool 1918, 26, 65–82. [Google Scholar] [CrossRef]
- Guyer, M. F.; Smith, E. A. Studies on cytolysins II Transmission of induced eye-defects J. Expt. Zool 1920, 31, 171–216. [Google Scholar] [CrossRef]
- Guyer, M. F.; Smith, E. A. Further studies on inheritance of eye defects induced in rabbits. J. Expt. Zool. 1924, 38, 449–475. [Google Scholar] [CrossRef]
- Steele, E.J. Mechanism of somatic hypermutation: Critical analysis of strand biased mutation signatures at A:T and G:C base pairs. Molec. Immunol. 2009, 46, 305–320. Available online: https://pubmed.ncbi.nlm.nih.gov/19062097/. [CrossRef]
- Steele, E.J.; Lloyd, S.S. Soma-to-germline feedback is implied by the extreme polymorphism at IGHV relative to MHC. BioEssays 2015, 37, 557–569. Available online: https://pubmed.ncbi.nlm.nih.gov/25810320/. [CrossRef]
- Steele, E.J. Somatic hypermutation in immunity and cancer: Critical analysis of strand-biased and codon-context mutation signatures. DNA Repair 2016, 45, 1–24. Available online: https://pubmed.ncbi.nlm.nih.gov/27449479/. [CrossRef]
- Gorczynski, R.M.; Kennedy, M.; MacRae, S.; Ciampi, A. A possible maternal effect in the abnormal hyporesponsiveness to speci c alloantigens in offspring born to neonatally tolerant fathers. J. Immunol. 1983, 131, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- Gorczynski, R.M.; Kennedy, M. Behaviour trait associated with conditioned immunity. Brain Behav. Immun. 1987, 1, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Ader, R.; Cohen, N. Behaviourally conditioned immunosuppression and murine systemic lupus erythematosus. Science 1982, 215, 1534–1536. Available online: https://pubmed.ncbi.nlm.nih.gov/7063864/. [CrossRef]
- Gorczynski, R.M. Conditioned stress responses by pregnant and/or lactating mice reduce immune responses of their offspring after weaning. Brain Behav. Immmun 1992, 6, 87–95. [Google Scholar] [CrossRef]
- Liu, Y. A new perspective on Darwin’s Pangenesis. Biol. Res. 2008, 83, 141-–149. https://pubmed.ncbi.nlm.nih.gov/18429766/. [CrossRef]
- Liu, Y. Darwin’s Pangenesis and graft hybridization. Adv. Genet. 2018, 102, 27-–66. https://pubmed.ncbi.nlm.nih.gov/30122234/. [CrossRef] [PubMed]
- Liu, Y.; Li, X. Darwin’s Pangenesis as a molecular theory of inherited diseases. Gene 2016, 582, 19–22. Available online: https://pubmed.ncbi.nlm.nih.gov/26836487/. [CrossRef]
- Chen, W.G. DNA Release and Uptake Associated with the Development of Pleomorphic Cells in Mammalian Skin Autotransplants. West Indian Med J 2011, 60(3), 257. Available online: https://pubmed.ncbi.nlm.nih.gov/22224335/.
- Li, Y.; Syed, J.; Sugiyama, H. RNA-DNA triplex formation by long noncoding RNAs. Cell. Chem. Biol. 2016, 23, 1325–1333. Available online: https://pubmed.ncbi.nlm.nih.gov/27773629/. [CrossRef]
- Chen, F.; Wang, N.; Tan, H.Y.; Guo, W.; Zhang, C.; Feng, Y. The functional roles of exosomes-derived long non-coding RNA in human cancer. Cancer Biol. Ther. 2019, 20, 583–592. Available online: https://pubmed.ncbi.nlm.nih.gov/30739532/. [CrossRef]
- Franklin, A.; Milburn, P.J.; Blanden, R.V.; Steele, E.J. Human DNA polymerase-h(eta), an A-T mutator in somatic hypermutation of rearranged immunoglobulin genes, is a reverse transcriptase. Immunol. Cell Biol. 2004, 82, 219–225. Available online: https://pubmed.ncbi.nlm.nih.gov/15061777/. [CrossRef]
- Su, Y.; Egli, M.; Guengerich, F.P. Human DNA polymerase eta accommodates RNA for strand extension. J. Biol. Chem. 2017, 292, 18044–18051. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Ghodke, P.P.; Egli, M.; Li, L.; Wang, Y.; Guengerich, F.P. Human DNA polymerase εhas reverse transcriptase activity in cellular environments. J. Biol. Chem. 2019, 294, 6073–6081. [Google Scholar] [CrossRef]
- Chakraborty, A.; Tapryal, N.; Islam, A.; Sarker, A.H.; Manohar, K.; Mitra, J.; Hegde, M.L.; Hazra, T. Human DNA polymerase eta promotes RNA-templated error-free repair of DNA double-strand breaks. J. Biol. Chem. 2023, 299, 102991. [Google Scholar] [CrossRef] [PubMed]
- Franklin, A.; Steele, E.J. RNA-directed DNA repair and antibody somatic hypermutation. Trends Genet. 2022, 38, 426–436. Available online: https://pubmed.ncbi.nlm.nih.gov/34740453/. [CrossRef]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.J.R.; Behjati, S.; Bjankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Borresen-Dale, A.-L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. Available online: https://pubmed.ncbi.nlm.nih.gov/23945592/. [CrossRef] [PubMed]
- Alexandrov, L.B.; Kim, J.; Haradhvala, N.J.; Huang, M.N.; Ng, A.W.T.; Wu, Y.; Boot, A.; Covington, K.R.; Gordenin, D.A.; Bergstrom, E.N.; et al. The repertoire of mutational signatures in human cancer. Nature 2020, 578, 94=101. Available online: https://pubmed.ncbi.nlm.nih.gov/32025018/. [CrossRef]
- Otlu, B.; Diaz-Gay, M.; Vernes, I.; Bergstrom, E.N.; Zhivagui, M.; Barnes, M.; Alexandrov, L.B. Topography of mutational signatures in human cancer. Cell Rep. 2023, 42, 112930. Available online: https://pubmed.ncbi.nlm.nih.gov/37540596/. [CrossRef]
- Kuraoka, I.; Endou, M.; Yamaguchi, Y.; Wada, T.; Handa, H.; Tanaka, K. Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. J. Biol. Chem. 2003, 278, 7294–7299. Available online: https://pubmed.ncbi.nlm.nih.gov/12466278/. [CrossRef]
- Steele, E.J.; Lindley, R.A.; Wen, J.; Weiller, G.F. Computational analyses show A-to-G mutations correlate with nascent mRNA hairpins at somatic hypermutation hotspots. DNA Repair 2006, 5, 1346–1363. Available online: https://pubmed.ncbi.nlm.nih.gov/16884961/. [CrossRef]
- Steele, E.J.; Lindley, R.A. ADAR deaminase A-to-I editing of DNA and RNA moieties of RNA:DNA hybrids has implications for the mechanism of Ig somatic hypermutation. DNA Repair 2017, 5, 1–6. Available online: https://pubmed.ncbi.nlm.nih.gov/28482199/. [CrossRef]
- Wu, J.; Li, Z. Human polynucleotide phosphorylase reduces oxidative RNA damage and protects HeLa cell against oxidative stress. Biochem. Biophys. Res. Commun. 2008, 372, 288–292. Available online: https://pubmed.ncbi.nlm.nih.gov/18501193/. [CrossRef]
- Franklin, A.; Steele, E.J.; Lindley, R.A. A proposed reverse transcription mechanism for (CAG)n and similar expandable repeats that cause neurological and other diseases. Heliyon 2020, 6, e03258. Available online: https://pubmed.ncbi.nlm.nih.gov/32140575/. [CrossRef]
- Matsuda, F.; Ishii, K.; Boutvagnet, P.; Kuma, K.i.; Hayashida, H.; Miyata, T.; Honjo, T. The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus. J Exp Med. 1998, 188, 2151–2162. Available online: https://pubmed.ncbi.nlm.nih.gov/9841928/. [CrossRef]
- Li, H.; Cui, X.; Pramanik, S.; Chimge, N-O. Genetic diversity of the human immunoglobulin heavy chain VH region. Immunol Rev 2002, 190, 53–68. Available online: https://pubmed.ncbi.nlm.nih.gov/12493006/. [CrossRef] [PubMed]
- Chimge, N-O.; Pramanik, S.; Hu, G.; Lin, Y.; Gao, L.; Shen, L; Li, H. Determination of gene organization in the human IGHV region on single chromosomes. Genes Immunity 2005, 6, 186–193. Available online: https://pubmed.ncbi.nlm.nih.gov/15744329/. [CrossRef] [PubMed]
- Pramanik, S.; Cui, X.; Wang, H-Y.; Chimge, N-O.; Hu, G.; Shen, L.; Gao, R.; Li, H. Segmental duplication as one of the driving forces underlying the diversity of the human immunoglobulin heavy chain variable gene region. BMC Genomics 2011, 12, 78. [Google Scholar] [CrossRef] [PubMed]
- Erwin, J.A.; Paquola, A..C.M.; Singer, T.; Gallina, I.; Movotny, M.; Quayle, C.; Bedrosian, T.A.; Alves, F.A.I.; Butcher, C.R.; Herdy, J.R. L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat Neurosci 2016, 19(12), 1583–1591. Available online: https://pubmed.ncbi.nlm.nih.gov/27618310/. [CrossRef] [PubMed]
- Lefranc, M-P.; Guidicelli, V.; Ginestoux, C.; Jabado-Michaloud, J.; Folch, G.; Bellahcene, F.; Wu, Y.; Gemrot, E.; Brochet, X.; Lane, J.; Regnier, L.; et al. IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res. 2009, 37(Database issue), D1006–12. Available online: https://pubmed.ncbi.nlm.nih.gov/18978023/. [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
