Submitted:
29 January 2026
Posted:
30 January 2026
You are already at the latest version
Abstract
Keywords:
1. Classical Pathophysiology of COPD
- Intrinsic narrowing of affected airways
- b. Partial or total obliteration of the small bronchi by mucus hypersecretion
- c. Decreased lung elastic recoil
- d. Bronchi and bronchioles smooth muscle spasm
- e. Extrinsic compression of small airways by hyperinflated neighboring alveoli
- -
- Intrapulmonary vascular shunt. It is generated at a certain point in COPD, when pulmonary hypertension (PH) sets in, meaning the pressure in the lung arterioles exceeds a certain limit. The consequence is the opening of arteriovenous anastomoses in different areas, with short-circuiting of the capillaries [10,11].
2. Classical Pathophysiology of Bronchial Asthma (BA)
- -
- Extrinsic (allergic) BA: determined by the inhalation of allergens from outside the body (dust, pollen, human or animal hair, flakes etc.);
- -
- Intrinsic (non-allergic/infectious) BA: determined by various bronchopulmonary infectious processes, inhalation of irritants (smoke, exhaust or industrial gases), physical exertion, inhalation of cold or humid air, drugs, emotional stress.
- A.
- Immunological and pro-inflammatory mediators discharge abnormalities
- B. Abnormalities of the autonomic nervous system (ANS) that innervates the bronchial territory.
3. Pathophysiological Details in COPD and BA—Similarities and Differences Regarding:
- -
- EFFECTOR CELLS IN COPD AND BA
- They are the most important effector cells in BA, through the release of bronchoconstrictor mediators: histamine, SRS-A (LT C4, D4 and E4, also known as cysteinyl-leukotrienes) and PG D2 [52]. In allergic asthma, mast cells degranulate after the allergen is bound to IgE, which in turn binds to membrane receptors FcεR1. Another cause of degranulation is osmolarity changes secondary to hyperventilation. Apart from the classical chemoattractants that have already been presented, mast cells are directly recruited to the surface of the airways by the stem cell factor (SCF), released by the epithelial cells. SCF binds to mast cell c-Kit receptors [53,54]. Upon activation, mast cells release IL-4, IL-5, and IL-13, as well as neurotrophins, which appear to play an important role in the late response to allergens [55]. Mast cell-specific proteases, tryptase and chymase, are also released. Tryptase has a strong pro-inflammatory action too, contributing to the onset of bronchial hyperreactivity, while chymase has a profibrotic role, activating TGFβ [56].
- On the other hand, mast cells do not seem to have a significant role in COPD, which could explain the absence of variable airway narrowing, in stark contrast to BA [57]. An increased number of mast cells has been described in patients with centrilobular emphysema, being linked to bronchial hyperresponsiveness and possibly airway fibrosis [58,59].
- Some patients with severe BA have shown an increase in the activated neutrophils number in the airways and sputum, a phenomenon also observed in some mild or moderate BA forms [83,84]. The mechanisms of neutrophil-induced inflammation in BA are not clear, but they appear to be related to the treatment with corticosteroids, which prolong neutrophils lifespan and decrease antibacterial resistance. Another mechanism involves TH17 lymphocytes, known to have a strong pro-inflammatory action by activating neutrophils. They secrete the A and F forms of IL-17 and have been identified in severe asthma. [85].
- -
- MOLECULAR MECHANISMS
- -
- INFLAMMATION MORPHO-FUNCTIONAL CONSEQUENCES
- In patients with COPD, it has not been highlighted a significant increase in the bronchial wall muscle mass, probably because, among the released inflammatory mediators, there are not sufficient concentrations of the specific growth factors [57].
- On the other hand, in BA, bronchoconstriction is the main mechanism of the bronchial lumen narrowing and it is induced mainly by mast cell mediators. Bronchoconstriction is associated with the bronchial smooth muscle hypertrophy and hyperplasia, stimulated by growth factors such as PDGF and endothelin-1, released by inflammatory cells and epithelial cells. In turn, smooth muscle cells also release inflammatory mediators, which contribute to the lumen narrowing [145].
- Effects of inflammation on the cough reflex:
- Effects of inflammation on bronchoconstriction:
- -
- Bronchoconstriction can be also triggered by a non-neuronal mechanism, which involves the release of acetylcholine from bronchial epithelial cells and inflammatory cells, this being an important inducer of bronchial spasm in the peripheral area of the bronchial trees, where cholinergic innervation is very reduced [151].
- In all asthmatic patients, the basement membrane shows apparent thickening due to subepithelial fibrosis (deposition of type III and IV collagen fibers) and eosinophil aggregation beneath the epithelial basement membrane [153,154]. The most likely molecular substrate of these changes is the release of TGFβ from the epithelial and inflammatory cells activated by repeated bronchoconstriction-induced mechanical stress. As BA worsens, fibrosis extends beyond the space beneath the basement membrane and encompasses the entire bronchial wall, presumably through the phenotypic transformation of bronchial smooth muscle cells into myofibroblasts [153]
- In COPD, peribronchiolar fibrosis is an important factor in disease progression. The molecular mechanism is also initiated by fibrogenic inflammatory mediators, released by epithelial cells, and activated macrophages: TGFβ, connective tissue growth factor (CTGF) and endothelin. An important histopathological observation is that fibrosis of the small airways is an early change in the development of COPD, preceding the onset of emphysema. As long as the inflammatory mechanisms can be inhibited, the airway narrowing is reversible [153,154,155].
- -
- QUANTUM IMPLICATIONS OF MOLECULAR MECHANISMS
- -
- A. Quantum behavior of reactive oxygen species and other inflammation mediators
- B. Quantum consequences of fibrosis
- All diseases of the body involve the appearance of disruptions in the mechanisms of structural and functional interrelationship between organs, tissues, cells and molecules. We have presented these disruptions for the two prototypical lung pathologies, COPD and asthma, but the approach is valid for any other disease.
- The molecular level is by no means the last at which physiological and pathological events in living organisms take place. The principles of quantum physics applied in experimental biology prove the origin of normality and disease at the level of subatomic particles, phenomena that must be understood by physicians.
- All stages of manifestation of normality and disease, from the organism and organs to subatomic particles and fields, involve overlapping phenomena, by no means excluding each other.
Funding Information
Declaration of interests
Ethics, Consent to Participate, and Consent to Publish declarations
References
- Barnes, PJ. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2013, 131(3), 636–45. [Google Scholar] [CrossRef] [PubMed]
- Hodge, G.; Roscioli, E.; Jersmann, H.; et al. Steroid resistance in COPD is associated with impaired molecular chaperone Hsp90 expression by pro-inflammatory lymphocytes. Respir Res 2016, 17, 135. [Google Scholar] [CrossRef]
- Barnes, P.J. Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond) 2017, 131(13), 1541–1558. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, SO; Cunha, CMCD; Soares, GMV; Silva, PL; Silva, AR; Gonçalves-de-Albuquerque, CF. Mechanisms, Pathophysiology and Currently Proposed Treatments of Chronic Obstructive Pulmonary Disease. Pharmaceuticals (Basel) 2021, 14(10), 979. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kraik, K; Tota, M; Laska, J; Łacwik, J; Paździerz, Ł; Sędek, Ł; Gomułka, K. The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Cells 2024, 13(15), 1271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agudelo, CW; Kumley, BK; Area-Gomez, E; Xu, Y; Dabo, AJ; Geraghty, P; Campos, M; Foronjy, R; Garcia-Arcos, I. Decreased surfactant lipids correlate with lung function in chronic obstructive pulmonary disease (COPD). PLoS One 2020, 15(2), e0228279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koopman, M; Posthuma, R; Vanfleteren, LEGW; Simons, SO; Franssen, FME. Lung Hyperinflation as Treatable Trait in Chronic Obstructive Pulmonary Disease: A Narrative Review. Int J Chron Obstruct Pulmon Dis. 2024, 19, 1561–1578. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Papandrinopoulou, D; Tzouda, V; Tsoukalas, G. Lung compliance and chronic obstructive pulmonary disease. Pulm Med. 2012, 2012, 542769. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Swenson, KE; Swenson, ER. Pathophysiology of Acute Respiratory Distress Syndrome and COVID-19 Lung Injury. Crit Care Clin. 2021, 37(4), 749–776. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sakao, S; Voelkel, NF; Tatsumi, K. The vascular bed in COPD: pulmonary hypertension and pulmonary vascular alterations. Eur Respir Rev 2014, 23(133), 350–5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raimondi Cominesi, D.; Forcione, M.; Pozzi, M.; et al. Pulmonary shunt in critical care: a practical approach with clinical scenarios. J Anesth Analg Crit Care 2024, 4, 18. [Google Scholar] [CrossRef] [PubMed]
- Chan, SY; Loscalzo, J. Pathogenic mechanisms of pulmonary arterial hypertension. J Mol Cell Cardiol. 2008, 44(1), 14–30. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guignabert, C.; Aman, J.; Bonnet, S.; et al. Pathology and pathobiology of pulmonary hypertension: current insights and future directions. European Respiratory Journal 2024, 2401095. [Google Scholar] [CrossRef] [PubMed]
- International consensus report on diagnosis and treatment of asthma. National Heart, Lung, and Blood Institute, National Institutes of Health. Bethesda, Maryland 20892. Publication no. European Respiratory Journal 1992, 1992 5(5), 601–641. [CrossRef]
- Habib, N; Pasha, MA; Tang, DD. Current Understanding of Asthma Pathogenesis and Biomarkers. Cells 2022, 11(17), 2764. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barnes, P.J. Immunology of asthma and chronic obstructive pulmonary disease. Nat. Immunol. Rev. 8 2008, 183–192. [Google Scholar] [CrossRef]
- Maggi, E. The TH1/TH2 paradigm in allergy. Immunotechnology 1998, Volume 3(Issue 4), 233–244. [Google Scholar] [CrossRef]
- Bujoreanu, I; Gupta, V. Anatomy, Lymph Nodes. In StatPearls [Internet]; StatPearls Publishing: Treasure Island (FL), 25 Jul 2023; Available online: https://www.ncbi.nlm.nih.gov/books/NBK557717/.
- Komlósi, Zsolt I.; van de Veen, Willem; Kovács, Nóra; Szűcs, Gergő; Sokolowska, Milena; O'Mahony, Liam; Akdis, Mübeccel; Akdis, Cezmi A. Cellular and molecular mechanisms of allergic asthma. Molecular Aspects of Medicine 2022, Volume 85, 100995. [Google Scholar] [CrossRef]
- Mehlhop, PD; van de Rijn, M; Brewer, JP; Kisselgof, AB; Geha, RS; Oettgen, HC; Martin, TR. CD40L, but not CD40, is required for allergen-induced bronchial hyperresponsiveness in mice. In Am J Respir Cell Mol Biol; DOI] [PubMed; Google Scholar, 2000; Volume 23, pp. 646–651. [Google Scholar] [CrossRef]
- Zietkowski; Skiepko, R.; Tomasiak, M. M.; Bodzenta-Lukaszyk, A. Soluble CD40 ligand and soluble P-selectin in allergic asthma patients during exercise-induced bronchoconstriction. Journal of Investigational Allergology & Clinical Immunology 2008, vol. 18(no. 4), 272–278. [Google Scholar]
- (PDF) The Role of CD40 in Allergic Rhinitis and Airway Remodelling. Available online: https://www.researchgate.net/publication/351561816_The_Role_of_CD40_in_Allergic_Rhinitis_and_Airway_Remodelling (accessed on 11 Sep 2025).
- Eckl-Dorna, J; Villazala-Merino, S; Campion, NJ; Byazrova, M; Filatov, A; Kudlay, D; Karsonova, A; Riabova, K; Khaitov, M; Karaulov, A; Niederberger-Leppin, V; Valenta, R. Tracing IgE-Producing Cells in Allergic Patients. Cells 2019, 8(9), 994. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stanworth, D.R. The role of non-antigen receptors in mast cell signalling processes. Molecular Immunology 1984, Volume 21(Issue 12), Pages 1183–1190. [Google Scholar] [CrossRef]
- Lambrecht, Bart N. The Cytokines of Asthma. Immunity, Volume 2019, Volume 50(Issue 4), 975–991. [Google Scholar] [CrossRef] [PubMed]
- Falcon, RMG; Caoili, SEC. Immunologic, genetic, and ecological interplay of factors involved in allergic diseases. Front Allergy 2023, 4, 1215616. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mukherjee, AB; Zhang, Z. Allergic asthma: influence of genetic and environmental factors. J Biol Chem. 2011, 286(38), 32883–9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miteva, D.; Lazova, S.; Velikova, T. Genetic and Epigenetic Factors in Risk and Susceptibility for Childhood Asthma. Allergies 2023, 3, 115–133. [Google Scholar] [CrossRef]
- Dráber P., Sulimenko V. , Dráberová E., Cytoskeleton in Mast Cell Signaling, Frontiers in Immunology, Volume 3 – 2012, 2012, https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2012.00130n DOI=10.3389/fimmu.2012.00130, ISSN=1664-3224.
- Erjefält, J. S, Mast cells in human airways: the culprit? European Respiratory Review 2014, 23(133), 299–307. [Google Scholar] [CrossRef]
- Kawa A., The role of mast cells in allergic inflammation, Respiratory Medicine, Volume 106, Issue 1, 2012, Pages 9-14, (https :// www.science direct.com /science/article/pii/S0954611111003325). ISSN 0954-6111. [CrossRef]
- Barnes, P.J. Pathophysiology of allergic inflammation. Immunol. Rev. 2011, 242(1), 31–50. [Google Scholar] [CrossRef]
- Moon, TC; Befus, AD; Kulka, M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol 2014, 5, 569. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Halova, I; Draberova, L; Draber, P. Mast cell chemotaxis - chemoattractants and signaling pathways. Front Immunol 2012, 3, 119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mukai, K; Tsai, M; Saito, H; Galli, SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. 2018, 282(1), 121–150. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hall, S; Agrawal, DK. Key mediators in the immunopathogenesis of allergic asthma. Int Immunopharmacol 2014, 23(1), 316–29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Pei. Inflammatory mediators mediate airway smooth muscle contraction through a G protein-coupled receptor–transmembrane protein 16A–voltage-dependent Ca2+ channel axis and contribute to bronchial hyperresponsiveness in asthma. Journal of Allergy and Clinical Immunology 2018, Volume 141(Issue 4), Pages 1259–1268.e11. [Google Scholar] [CrossRef] [PubMed]
- Luna-Gomes, T.; Bozza, T. P.; Bandeira-Melo, C. Eosinophil recruitment and activation: the role of lipid mediators. In Front. Pharmacol., Sec. Experimental Pharmacology and Drug Discovery; 2013; Volume 4. [Google Scholar] [CrossRef]
- van der Velden, VH; Hulsmann, AR. Autonomic innervation of human airways: structure, function, and pathophysiology in asthma. Neuroimmunomodulation 1999, 6(3), 145–59. [Google Scholar] [CrossRef] [PubMed]
- Canning, Brendan J.; Woo, Ariel; Mazzone, Stuart B. Neuronal Modulation of Airway and Vascular Tone and Their Influence on Nonspecific Airways Responsiveness in Asthma. Journal of Allergy 2012, 2012(108149), 7 pages. [Google Scholar] [CrossRef]
- Kistemaker, LEM; Prakash, YS. Airway Innervation and Plasticity in Asthma. Physiology (Bethesda) 2019, 34(4), 283–298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barnes, Peter J. Neuroeffector mechanisms: The interface between inflammation and neuronal responses. Journal of Allergy and Clinical Immunology 1996, Volume 98(Issue 5), S73–S83. [Google Scholar] [CrossRef]
- Barnes, P.J. Cellular and molecular mechanisms of Chronic Obstructive Pulmonary Disease. Clin. Chest Med 2014, 35(1), 71–86. [Google Scholar] [CrossRef]
- Barnes, P.J. Asthma-COPD Overlap. Chest 2016, 149(1), 7–8. [Google Scholar] [CrossRef]
- Castaldi, P.J.; Dy, J.; Ross, J.; Chang, Y.; Washko, G.R.; Curran-Everett, D.; et al. Cluster analysis in the COPD Gene study identifies subtypes of smokers with distinct patterns of airway disease and emphysema. Thorax 2014, 69(5), 415–422. [Google Scholar] [CrossRef]
- Ricciardolo, FLM; Sprio, AE; Baroso, A; Gallo, F; Riccardi, E; Bertolini, F; Carriero, V; Arrigo, E; Ciprandi, G. Characterization of T2-Low and T2-High Asthma Phenotypes in Real-Life. Biomedicines 2021, 9(11), 1684. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duffus, Emily K.a; Holguin, Fernandob; Rastogi, Deepac. Non-T2 asthma. Current Opinion in Pulmonary Medicine 2025, 31(3), p 287–293. [Google Scholar] [CrossRef] [PubMed]
- Lotvall, J.; Akdis, C.A.; Bacharier, L.B.; Bjermer, L.; Casale, T.B.; Custovic, A.; et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J. Allergy Clin. Immunol. 127 2011, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Cefaloni, F.; Adiletta, V.; Monteleone, G.; Cotugno Depalma, D.; Fiorenzo, E.; Boccabella, Cristina; Bonini, M. Bronchial hyperreactivity (BHR): An old but gold hallmark of asthma. HSOA Journal of Allergy Disorders & Therapy 2023. [Google Scholar] [CrossRef]
- Chapman, DG; Irvin, CG. Mechanisms of airway hyper-responsiveness in asthma: the past, present and yet to come. Clin Exp Allergy 2015, 45(4), 706–19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hekking, P.P.; Wener, R.R.; Amelink, M.; Zwinderman, A.H.; Bouvy, M.L.; Bel, E.H. The prevalence of severe refractory asthma. J. Allergy Clin. Immunol. 2015, 135(4), 896–902. [Google Scholar] [CrossRef]
- Murphy, RC; Hallstrand, TS. Exploring the origin and regulatory role of mast cells in asthma. Curr Opin Allergy Clin Immunol 2021, 21(1), 71–78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Campbell, E; Hogaboam, C; Lincoln, P; Lukacs, NW. Stem cell factor-induced airway hyperreactivity in allergic and normal mice. Am J Pathol 1999, 154(4), 1259–65. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, H; Chen, X; Focia, PJ; He, X. Structural basis for stem cell factor-KIT signaling and activation of class III receptor tyrosine kinases. EMBO J 2007, 26(3), 891–901. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Voisin, T; Bouvier, A; Chiu, IM. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol 2017, 29(6), 247–261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caughey, GH. Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev. 2007, 217, 141–54. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barnes, P.J. Inflammatory mechanisms in COPD. J. Allergy Clin. Immunol. 2016, 138(1), 16–27. [Google Scholar] [CrossRef]
- Ballarin, A.; Bazzan, E.; Zenteno, R.H.; Turato, G.; Baraldo, S.; Zanovello, D.; Mutti, E.; Hogg, J.C.; Saetta, M.; Cosio, M.G. Mast cell infiltration discriminates between histopathological phenotypes of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2012, 186, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y; Xu, J; Meng, Y; Adcock, IM; Yao, X. Role of inflammatory cells in airway remodeling in COPD. Int J Chron Obstruct Pulmon Dis 2018, 13, 3341–3348. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ezeamuzie, C. I.; Al-Attiyah, R.; Shihab, P. K.; Al-Radwan, R. Low-affinity IgE receptor (FcεRII)-mediated activation of human monocytes by both monomeric IgE and IgE/anti-IgE immune complex. International Immunopharmacology 2009, Volume 9(Issue 9), Pages 1110–1114. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y; Duru, EA; Ameredes, BT. Role of IL-10 in the resolution of airway inflammation. Curr Mol Med. 2008, 8(5), 437–45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barnes, P.J.; Burney, P.G.J.; Silverman, E.K.; Celli, B.R.; Vestbo, J.; Wedzicha, J.A.; et al. Chronic obstructive pulmonary disease. Nat. Rev. Primers 1 2015, 1–21. [Google Scholar] [CrossRef]
- Yamasaki, K; Eeden, SFV. Lung Macrophage Phenotypes and Functional Responses: Role in the Pathogenesis of COPD. Int J Mol Sci 2018, 19(2), 582. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Christopoulou, ME; Papakonstantinou, E; Stolz, D. Matrix Metalloproteinases in Chronic Obstructive Pulmonary Disease. Int J Mol Sci. 2023, 24(4), 3786. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tokunaga, R; Zhang, W; Naseem, M; Puccini, A; Berger, MD; Soni, S; McSkane, M; Baba, H; Lenz, HJ. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy. Cancer Treat Rev 2018, 63, 40–47. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Müller, M; Carter, S; Hofer, MJ; Campbell, IL. Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity--a tale of conflict and conundrum. Neuropathol Appl Neurobiol 2010, 36(5), 368–87. [Google Scholar] [CrossRef] [PubMed]
- Finney, LJ; Ritchie, A; Pollard, E; Johnston, SL; Mallia, P. Lower airway colonization and inflammatory response in COPD: a focus on Haemophilus influenzae. Int J Chron Obstruct Pulmon Dis 2014, 9, 1119–32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Love, ME; Proud, D. Respiratory Viral and Bacterial Exacerbations of COPD-The Role of the Airway Epithelium. Cells 2022, 11(9), 1416. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jabeen, MF; Sanderson, ND; Foster, D; Crook, DW; Cane, JL; Borg, C; Connolly, C; Thulborn, S; Pavord, ID; Klenerman, P; Street, TL; Hinks, TSC. Identifying Bacterial Airways Infection in Stable Severe Asthma Using Oxford Nanopore Sequencing Technologies. Microbiol Spectr 2022, 10(2), e0227921. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vandivier, RW; Henson, PM; Douglas, IS. Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest 2006, 129(6), 1673–82. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W; Zhou, Z; Guo, X; Zuo, X; Zhang, J; An, Y; Zheng, H; Yue, Y; Wang, G; Wang, F. Efferocytosis and Respiratory Disease. Int J Mol Sci. 2023, 24(19), 14871. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smolinska, S; Antolín-Amérigo, D; Popescu, FD; Jutel, M. Thymic Stromal Lymphopoietin (TSLP), Its Isoforms and the Interplay with the Epithelium in Allergy and Asthma. Int J Mol Sci. 2023, 24(16), 12725. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsoumakidou, M; Demedts, IK; Brusselle, GG; Jeffery, PK. Dendritic cells in chronic obstructive pulmonary disease: new players in an old game. In Am J Respir Crit Care Med; DOI] [PubMed; Google Scholar, 2008; Volume 177, 11, pp. 1180–6. [Google Scholar] [CrossRef]
- Bao, Y; Zhu, X. Role of Chemokines and Inflammatory Cells in Respiratory Allergy. J Asthma Allergy 2022, 15, 1805–1822. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davoine, F; Lacy, P. Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Front Immunol 2014, 5, 570. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karta, MR; Broide, DH; Doherty, TA. Insights into Group 2 Innate Lymphoid Cells in Human Airway Disease. Curr Allergy Asthma Rep. 2016, 16(1), 8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Rijt, L; von Richthofen, H; van Ree, R. Type 2 innate lymphoid cells: at the cross-roads in allergic asthma. Semin Immunopathol 2016, 38(4), 483–96. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bakakos, A.; Rovina, N.; Bakakos, P. Treatment Challenges in Severe Eosinophilic Asthma: Differential Response to Anti-IL-5 and Anti-IL-5R Therapy. Int. J. Mol. Sci. 2021, 22, 3969. [Google Scholar] [CrossRef] [PubMed]
- Luo, J; Chen, W; Liu, W; Jiang, S; Ye, Y; Shrimanker, R; Hynes, G; Klenerman, P; Pavord, ID; Xue, L. IL-5 antagonism reverses priming and activation of eosinophils in severe eosinophilic asthma. Mucosal Immunol 2024, 17(4), 524–536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McBrien, CN; Menzies-Gow, A. The Biology of Eosinophils and Their Role in Asthma. Front Med (Lausanne) 2017, 4, 93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tashkin, DP; Wechsler, ME. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2018, 13, 335–349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nakamura, R.; Kabata, H.; Sasahara, K.; Kurihara, M.; Kagatani, J.; Sehmi, R.; Fukunaga, K. Multifaceted roles of group 2 innate lymphoid cells in respiratory diseases. Respiratory Investigation, Volume Volume 63(Issue 5, 2025), Pages 918–927. [CrossRef]
- Ray, A; Kolls, JK. Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends Immunol 2017, 38(12), 942–954. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ray, A.; Raundhal, M.; Oriss, T.B.; Ray, P.; Wenzel, S.E. Current concepts of severe asthma. J. Clin. Invest. 2016, 126(7), 2394–2403. [Google Scholar] [CrossRef]
- Chaoyu, I. Increased frequency of dual-positive TH2/TH17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma. Journal of Allergy and Clinical Immunology Volume 134(Issue 5), 1175–1186.e7.
- Jasper, AE; McIver, WJ; Sapey, E; Walton, GM. Understanding the role of neutrophils in chronic inflammatory airway disease. F1000Res 2019, 8, F1000 Faculty Rev–557. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoenderdos, K; Condliffe, A. The neutrophil in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2013, 48, 531–9. [Google Scholar] [CrossRef]
- Strzelak, A; Ratajczak, A; Adamiec, A; Feleszko, W. Tobacco Smoke Induces and Alters Immune Responses in the Lung Triggering Inflammation, Allergy, Asthma and Other Lung Diseases: A Mechanistic Review. Int J Environ Res Public Health 2018, 15(5), 1033. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rovina, N; Koutsoukou, A; Koulouris, NG. Inflammation and immune response in COPD: where do we stand? Mediators Inflamm. 2013, 2013, 413735. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, XR; Li, YP; Gao, S; Xia, W; Gao, K; Kong, QH; Qi, H; Wu, L; Zhang, J; Qu, JM; Bai, CX. Increased serum levels of lipocalin-1 and -2 in patients with stable chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2014, 9, 543–9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stæhr Gudmann, N.; Manon-Jensen, T.; Bülow Sand, J. M.; Diefenbach, C.; Sun, S.; Danielsen, A.; Karsdal, M. A.; Leeming, D. J. Lung tissue destruction by proteinase 3 and cathepsin G mediated elastin degradation is elevated in chronic obstructive pulmonary disease. Biochemical and Biophysical Research Communications 2018, Volume 503(Issue 3), Pages 1284–1290. [Google Scholar] [CrossRef]
- Harker, JA; Lloyd, CM. T helper 2 cells in asthma. J Exp Med. 2023, 220(6), e20221094. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Olsthoorn, E. M.S.; van Krimpen, A.; Hendriks, W. R.; Stadhouder, R. Chronic Inflammation in Asthma: Looking Beyond the Th2 Cell. Immunological Reviews 2025, Volume 330, e70010. [Google Scholar] [CrossRef] [PubMed]
- Nejman-Gryz, P.; Górska, K.; Paplińska-Goryca, M. Epithelial derived cytokines IL-25, IL-33 and TSLP in obstructive lung dise. European Respiratory Journal 2017, 50 (suppl 61), PA571. [Google Scholar] [CrossRef]
- Koch, S; Sopel, N; Finotto, S. Th9 and other IL-9-producing cells in allergic asthma. Semin Immunopathol 2017, 39(1), 55–68. [Google Scholar] [CrossRef] [PubMed]
- Soroosh, P; Doherty, TA. Th9 and allergic disease. Immunology 2009, 127(4), 450–8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Williams, M; Todd, I; Fairclough, LC. The role of CD8 + T lymphocytes in chronic obstructive pulmonary disease: a systematic review. Inflamm Res 2021, 70(1), 11–18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Janeway, CA, Jr.; Travers, P; Walport, M. Immunobiology: The Immune System in Health and Disease. T cell-mediated cytotoxicity, 5th edition; Garland Science: New York, 2001; Available online: https://www.ncbi.nlm.nih.gov/books/NBK27101/.
- Xu, J; Zeng, Q; Li, S; Su, Q; Fan, H. Inflammation mechanism and research progress of COPD. Front Immunol 2024, 15, 1404615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Groom, JR; Luster, AD. CXCR3 in T cell function. Exp Cell Res 2011, 317(5), 620–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Demedts, IK; Demoor, T; Bracke, KR; Joos, GF; Brusselle, GG. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res. 2006, 7(1), 53. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lambers, C; Hacker, S; Posch, M; Hoetzenecker, K; Pollreisz, A; Lichtenauer, M; Klepetko, W; Ankersmit, HJ. T cell senescence and contraction of T cell repertoire diversity in patients with chronic obstructive pulmonary disease. Clin Exp Immunol 2009, 155(3), 466–75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weng, NP; Akbar, AN; Goronzy, J. CD28(-) T cells: their role in the age-associated decline of immune function. Trends Immunol 2009, 30(7), 306–12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hsu, AT; Gottschalk, TA; Tsantikos, E; Hibbs, ML. The Role of Innate Lymphoid Cells in Chronic Respiratory Diseases. Front. Immunol. 2021, 12, 733324. [Google Scholar] [CrossRef]
- Koch, S.; Sopel, N.; Finotto, S. Th9 and other IL-9-producing cells in allergic asthma. Semin. Immunopathol. 2017, 39, 55–68. [Google Scholar] [CrossRef]
- Doherty, T.A.; Broide, D.H. Insights into the biology of IL-9 in asthma. J. Allergy Clin. Immunol. CrossRef. Google Scholar, 2022.
- Kliem, C.V.; Schaub, B. The role of regulatory B cells in immune regulation and childhood allergic asthma. Mol Cell Pediatr 2024, 11, 1. [Google Scholar] [CrossRef]
- Hammad, H.; Lambrecht, N. B. The basic immunology of asthma. Cell 2021, Volume 184(Issue 6), Pages 1469–1485. [Google Scholar] [CrossRef]
- Polverino, F; Seys, LJ; Bracke, KR; Owen, CA. B cells in chronic obstructive pulmonary disease: moving to center stage. Am J Physiol Lung Cell Mol Physiol. 2016, 311(4), L687–L695. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dong, LL; Liu, ZY; Chen, KJ; Li, ZY; Zhou, JS; Shen, HH; Chen, ZH. The persistent inflammation in COPD: is autoimmunity the core mechanism? Eur Respir Rev. 2024, 33(171), 230137. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mukherjee, M; Nair, P. Autoimmune Responses in Severe Asthma. Allergy Asthma Immunol Res 2018, 10(5), 428–447. [Google Scholar] [CrossRef] [PubMed]
- Ye, YM; Nahm, DH; Kim, SH; Kim, SH; Choi, JH; Suh, CH; Park, HS. Circulating Autoantibodies in Patients with Aspirin-intolerant Asthma: An Epiphenomenon Related to Airway Inflammation. J Korean Med Sci. 2006, 21(3), 412–417. [Google Scholar] [CrossRef] [PubMed]
- Westwood, JP; Mackay, AJ; Donaldson, G; Machin, SJ; Wedzicha, JA; Scully, M. The role of complement activation in COPD exacerbation recovery. ERJ Open Res 2016, 2(4), 00027–2016. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Panagopoulos, D.; Johansson, O.; Carlo, G. Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity. Sci Rep 2015, 5, 14914. [Google Scholar] [CrossRef]
- Messori, C. Deep into the Water: Exploring the Hydro-Electromagnetic and Quantum-Electrodynamic Properties of Interfacial Water in Living Systems. Open Access Library Journal 2019, 6, 1–62. [Google Scholar] [CrossRef]
- Cai, J; Griffin, E; Guarochico-Moreira, VH; Barry, D; Xin, B; Yagmurcukardes, M; Zhang, S; Geim, AK; Peeters, FM; Lozada-Hidalgo, M. Wien effect in interfacial water dissociation through proton-permeable graphene electrodes. Nat Commun 2022, 13(1), 5776. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, G; Lu, T; Zhang, L. Understanding the interfacial water structure in electrocatalysis. Natl Sci Rev. 2024, 11(12), nwae241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dahlén, SE; Hansson, G; Hedqvist, P; Björck, T; Granström, E; Dahlén, B. Allergen challenge of lung tissue from asthmatics elicits bronchial contraction that correlates with the release of leukotrienes C4, D4, and E4. Proc Natl Acad Sci U S A 1983, 80(6), 1712–6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kapoor, Y.; Kumar, K. Structural and clinical impact of anti-allergy agents: An overview. Bioorganic Chemistry, Volume 2020, Volume 94, 103351. [Google Scholar] [CrossRef]
- Arima, M; Fukuda, T. Prostaglandin D₂ and T(H)2 inflammation in the pathogenesis of bronchial asthma. Korean J Intern Med Erratum in: Korean J Intern Med. 2011 Jun;26(2):253. PMID: 21437156; PMCID: PMC3056260. 2011, 26(1), 8–18. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J. P. Mechanisms in COPD: Differences From Asthma. Chest 2000, Volume 117, Pages 10S–14S. [Google Scholar] [CrossRef] [PubMed]
- He, Rui; Chen, Yu; Cai, Qian. The role of the LTB4-BLT1 axis in health and disease. Pharmacological Research 2020, Volume 158, 104857. [Google Scholar] [CrossRef] [PubMed]
- Durrant, DM; Metzger, DW. Emerging roles of T helper subsets in the pathogenesis of asthma. Immunol Invest. 2010, 39(4-5), 526–49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cosmi, L; Liotta, F; Maggi, E; Romagnani, S; Annunziato, F. Th17 cells: new players in asthma pathogenesis. Allergy 2011, 66, 989–998. [Google Scholar] [CrossRef]
- Wang, C; Zhou, J; Wang, J; Li, S; Fukunaga, A; Yodoi, J; Tian, H. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther 2020, 5(1), 248. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malaviya, R; Laskin, JD; Laskin, DL. Anti-TNFα therapy in inflammatory lung diseases. Pharmacol Ther 2017, 180, 90–98. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, J; Li, X; Huang, C; Lin, Y; Dai, Q. Change of Serum Inflammatory Cytokines Levels in Patients With Chronic Obstructive Pulmonary Disease, Pneumonia and Lung Cancer. Technol Cancer Res Treat 2020, 19, 1533033820951807. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barnes, PJ. The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest. 2008, 118(11), 3546–56. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Montuschi, P.; Collins, J.V.; Ciabattoni, G.; Lazzeri, N.; Corradi, M.; Kharitonov, S.A.; Barnes, P.J. Exhaled 8-isoprostane as anin vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am. J. Respir. Crit. Care Med. CrossRef. 2000, 162 Pt 1, 1175–1177. [Google Scholar] [CrossRef]
- Victoni, T; Barreto, E; Lagente, V; Carvalho, VF. Oxidative Imbalance as a Crucial Factor in Inflammatory Lung Diseases: Could Antioxidant Treatment Constitute a New Therapeutic Strategy? Oxid Med Cell Longev 2021, 2021, 6646923. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Orriols, G; Aljama, C; Rodriguez-Frias, F; Medina, PG; Ferrer-Costa, R; Granados, G; Nuñez, A; López-González, A; Ruiz-Satelinas, G; Miravitlles, M; Barrecheguren, M; Esquinas, C. Quantification of serum elastase inhibitory activity in patients with pulmonary emphysema with and without alpha-1 antitrypsin deficiency. PLoS One 2025, 20(6), e0324237. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Conti, V; Corbi, G; Manzo, V; Pelaia, G; Filippelli, A; Vatrella, A. Sirtuin 1 and aging theory for chronic obstructive pulmonary disease. Anal Cell Pathol (Amst) 2015, 2015, 897327. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abdul Roda, M; Fernstrand, AM; Redegeld, FA; Blalock, JE; Gaggar, A; Folkerts, G. The matrikine PGP as a potential biomarker in COPD. Am J Physiol Lung Cell Mol Physiol. 2015, 308(11), L1095–101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, R; Wu, X; Gounni, AS; Xie, J. Mucus hypersecretion in chronic obstructive pulmonary disease: From molecular mechanisms to treatment. J Transl Int Med. 2023, 11(4), 312–315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schulman, ES; Nishi, H; Pelleg, A. Degranulation of human mast cells: modulation by P2 receptors' agonists. Front Immunol 2023, 14, 1216580. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramadan, A.; El-Samahy, M.; Elrosasy, A.; Al-Tawil, M.; Abdelaziz, A.; Soliman, M. A; Abouzid, M. Safety and efficacy of P2X3 receptor antagonist for the treatment of refractory or unexplained chronic cough: A systematic review and meta-analysis of 11 randomized controlled trials. Pulmonary Pharmacology & Therapeutics, Volume 2023, Volume 83, 102252. [Google Scholar] [CrossRef]
- Rivas, M; Gupta, G; Costanzo, L; Ahmed, H; Wyman, AE; Geraghty, P. Senescence: Pathogenic Driver in Chronic Obstructive Pulmonary Disease. Medicina (Kaunas) 2022, 58(6), 817. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Misawa, T; Tanaka, Y; Okada, R; Takahashi, A. Biology of extracellular vesicles secreted from senescent cells as senescence-associated secretory phenotype factors. Geriatr Gerontol Int. 2020, 20(6), 539–546. [Google Scholar] [CrossRef] [PubMed]
- Wan, R.; Srikaram, P.; Guntupalli, V.; Hu, C.; Chen, Q.; Gao, P. Cellular senescence in asthma: from pathogenesis to therapeutic challenges. eBioMedicine, Volume Volume 94(2023), 104717. [CrossRef]
- Sriprasart, T; Saiphoklang, N; Kawamatawong, T; Boonsawat, W; Mitthamsiri, W; Chirakalwasan, N; Chiewchalermsri, C; Athipongarporn, A; Kamalaporn, H; Kornthatchapong, K; Kulpraneet, M; Sompornrattanaphan, M; Oer-Areemitr, N; Rerkpattanapipat, T; Silairatana, S; Thawanaphong, S; Gaensan, T; Jirakran, K; Poachanukoon, O. Allergic rhinitis and other comorbidities associated with asthma control in Thailand. Front Med (Lausanne) 2024, 10, 1308390. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zysk, W.; Mesjasz, A.; Trzeciak, M.; Horvath, A.; Plata-Nazar, K. Gastrointestinal Comorbidities Associated with Atopic Dermatitis—A Narrative Review. Int. J. Mol. Sci. 2024, 25, 1194. [Google Scholar] [CrossRef] [PubMed]
- Agustí, A; Edwards, LD; Rennard, SI; MacNee, W; Tal-Singer, R; Miller, BE; Vestbo, J; Lomas, DA; Calverley, PM; Wouters, E; Crim, C; Yates, JC; Silverman, EK; Coxson, HO; Bakke, P; Mayer, RJ; Celli, B. Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Investigators. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS One 2012, 7(5), e37483. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qian, Y; Cai, C; Sun, M; Lv, D; Zhao, Y. Analyses of Factors Associated with Acute Exacerbations of Chronic Obstructive Pulmonary Disease: A Review. Int J Chron Obstruct Pulmon Dis. 2023, 18, 2707–2723. [Google Scholar] [CrossRef] [PubMed]
- Harvey, B.C.; Lutchen, K.R. Factors determining airway caliber in asthma. Critic. Rev. Biomed. Eng. 2013, 41(6), 515–532. [Google Scholar] [CrossRef] [PubMed]
- Hirota, N.; Martin, J.G. Mechanisms of airway remodeling. Chest 2013, 144(3), 1026–1032. [Google Scholar] [CrossRef]
- Shah, BK; Singh, B; Wang, Y; Xie, S; Wang, C. Mucus Hypersecretion in Chronic Obstructive Pulmonary Disease and Its Treatment. Mediators Inflamm 2023, 2023, 8840594. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, H; Ying, S; Dai, Y. Pathological Roles of Neutrophil-Mediated Inflammation in Asthma and Its Potential for Therapy as a Target. J Immunol Res. 2017, 2017, 3743048. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, YG; Tian, WM; Zhang, H; Li, M; Shang, YX. Nerve growth factor exacerbates allergic lung inflammation and airway remodeling in a rat model of chronic asthma. Exp Ther Med. 2013, 6(5), 1251–1258. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gheorghiu, M.; Trandafir, M.F.; Pasarica, D. Neurotrophin 3 as a new bidirectional signaling molecule between lung inflammation and the diffuse neuroendocrine system. the 43rd FEBS Congress, Prague, Czech Republic, 7-12 july 2018. [Google Scholar]
- Carlson AB, Kraus GP. Physiology, Cholinergic Receptors. [Updated 2023 Aug 14]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526134/.
- Yu, Kytikova O.; Novgorodtseva, TP; Antonyuk, MV; Gvozdenko, TA. The role of regulatory neuropeptides and neurotrophic factors in asthma pathophysiology. Russian Open Medical Journal 2019, 8, e0402. [Google Scholar] [CrossRef]
- Camp, B; Stegemann-Koniszewski, S; Schreiber, J. Infection-Associated Mechanisms of Neuro-Inflammation and Neuro-Immune Crosstalk in Chronic Respiratory Diseases. Int J Mol Sci. 2021, 22(11), 5699. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liesker, JJ; Ten Hacken, NH; Zeinstra-Smith, M; Rutgers, SR; Postma, DS; Timens, W. Reticular basement membrane in asthma and COPD: similar thickness, yet different composition. Int J Chron Obstruct Pulmon Dis. 2009, 4, 127–35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, D. Small Airway Disease in Patients with Chronic Obstructive Pulmonary Disease. Tuberc Respir Dis (Seoul) 2017, 80(4), 317–324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barnig, C; Lutzweiler, G; Giannini, M; Lejay, A; Charles, AL; Meyer, A; Geny, B. Resolution of Inflammation after Skeletal Muscle Ischemia-Reperfusion Injury: A Focus on the Lipid Mediators Lipoxins, Resolvins, Protectins and Maresins. Antioxidants (Basel) 2022, 11(6), 1213. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gheorghiu, M. Viul de dincolo de materie: revelatii cuantice in Fiziopatologie; Ed. Scoala Ardeleana, 2021; pp. 61–70. ISBN 978-606-797-706-6. [Google Scholar]
- Ahmad M, Wolberg A, Kahwaji CI. Biochemistry, Electron Transport Chain. [Updated 2023 Sep 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526105/.
- Stekhin, A.; Yakovleva, G.; Pronko, K.; Zemskov, V. Regulatory function of macroscopic quantum states of electrons in cell metabolism. Research Article - Clinical Practice 2018, 15(3), 707–715. [Google Scholar] [CrossRef]
- Bono, Ivan; Del Giudice, Emilio; Gamberale, Luca; Henry, Marc. Emergence of the Coherent Structure of Liquid Water. Water 2012, 4, 510–532. [Google Scholar] [CrossRef]
- Del Giudice, E.; Tedeschi, A.; Vitiello, G.; Voeikov, V. Coherent structures in liquid water close to hydrophilic surfaces 2013. J. Phys.: Conf. Ser. 442 012028. [CrossRef]
- Gardner, P.R. Resistance of Nitric Oxide Dioxygenase and Cytochrome c Oxidase to Inhibition by Nitric Oxide and Other Indications of the Spintronic Control of Electron Transfer. Biophysica 2025, 5, 41. [Google Scholar] [CrossRef]
- Villalpando-Rodriguez, GE; Gibson, SB. Reactive Oxygen Species (ROS) Regulates Different Types of Cell Death by Acting as a Rheostat. Oxid Med Cell Longev 2021, 2021, 9912436. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Usselman, RJ; Chavarriaga, C; Castello, PR; Procopio, M; Ritz, T; Dratz, EA; Singel, DJ; Martino, CF. The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics. Sci Rep. 2016, 6, 38543. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lüdtke, F.L.; Silva, T.J.; da Silva, M.G.; Hashimoto, J.C.; Ribeiro, A.P.B. Lipid Nanoparticles: Formulation, Production Methods and Characterization Protocols. Foods 2025, 14, 973. [Google Scholar] [CrossRef] [PubMed]
- Catalá, A; Díaz, M. Editorial: Impact of Lipid Peroxidation on the Physiology and Pathophysiology of Cell Membranes. Front Physiol. 2016, 7, 423. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schuermann, D.; Mevissen, M. Manmade Electromagnetic Fields and Oxidative Stress—Biological Effects and Consequences for Health. Int. J. Mol. Sci. 2021, 22, 3772. [Google Scholar] [CrossRef] [PubMed]
- Khan, YS; Farhana, A. Histology, Cell. In StatPearls [Internet]; StatPearls Publishing: Treasure Island (FL), 27 Mar 2025; Available online: https://www.ncbi.nlm.nih.gov/books/NBK554382/.
- Roig-Rosello, E.; Rousselle, P. The Human Epidermal Basement Membrane: A Shaped and Cell Instructive Platform That Aging Slowly Alters. Biomolecules 2020, 10, 1607. [Google Scholar] [CrossRef]
- Masic, A.; Bertinetti, L.; Schuetz, R.; et al. Osmotic pressure induced tensile forces in tendon collagen. Nat Commun 2015, 6, 5942. [Google Scholar] [CrossRef]
- Iannucci Leanne, E.; Dranoff Charles, S.; David Michael, A.; Lake Spencer, P. Optical Imaging of Dynamic Collagen Processes in Health and Disease. In Frontiers in Mechanical Engineering; 2022; Volume 8, Available online: https://www.frontiersin.org/journals/mechanical-engineering/articles/10.3389/fmech.2022.855271ISSN =2297-3079.
- Biswal, S; Agmon, N. Collagen Structured Hydration. Biomolecules 2023, 13(12), 1744. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Majewski, Alexander; Sanzari, Martin; Torzilli, Peter. Effects of ultraviolet radiation on the type-I collagen protein triple helical structure: A method for measuring structural changes through optical activity. Physical review. E, Statistical, nonlinear, and soft matter physics 2002, 65. 031920. [Google Scholar] [CrossRef]
- Gromkowska-Kępka, KJ; Puścion-Jakubik, A; Markiewicz-Żukowska, R; Socha, K. The impact of ultraviolet radiation on skin photoaging - review of in vitro studies. J Cosmet Dermatol 2021, 20(11), 3427–3431. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giannetti, G; Matsumura, F; Caporaletti, F; Micha, D; Koenderink, GH; Ilie, IM; Bonn, M; Woutersen, S; Giubertoni, G. Water and Collagen: A Mystery Yet to Unfold. Biomacromolecules 2025, 26(5), 2784–2799. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salvatore, L; Gallo, N; Natali, ML; Terzi, A; Sannino, A; Madaghiele, M. Mimicking the Hierarchical Organization of Natural Collagen: Toward the Development of Ideal Scaffolding Material for Tissue Regeneration. Front Bioeng Biotechnol. 2021, 9, 644595. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kalra, Aarat; Patel, Sahil; Bhuiyan, Asadullah; Preto, Jordane; Scheuer, Kyle; Mohammed, Usman; Lewis, John; Rezania, Vahid; Shankar, Karthik; Tuszynski, Jack. Investigation of the Electrical Properties of Microtubule Ensembles under Cell-Like Conditions. Nanomaterials 2020. [Google Scholar] [CrossRef]
- Chakrabarti, Rajarshi; Fung, Tak Shun; Kang, Taewook; Elonkirjo, Pieti W.; Suomalainen, Anu; Usherwood, Edward J.; Higgs, Henry N. Mitochondrial dysfunction triggers actin polymerization necessary for rapid glycolytic activation. J Cell Biol 2022, 221(11), e202201160. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).