Submitted:
29 January 2026
Posted:
29 January 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Results
2.1. THC and CBD
2.2. The THC Metabolites (THCOOH and THCOH)
2.3. CBDA and THCA
2.4. Synthetic Cannabinoids (JWH-018 and MDMB-FUBINACA)
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D. Duczmal, A. Bazan-wozniak, K. Niedzielska, and R. Pietrzak, “Cannabinoids—Multifunctional Compounds, Applications and Challenges—Mini Review,” Molecules, vol. 29, p. 4923, 2024,. [CrossRef]
- Stith, S. S.; Li, X.; Orozco, J.; Lopez, V.; Brockelman, F.; Keeling, K.; Hall, B.; Vigil, J. M. The effectiveness of common cannabis products for treatment of nausea. J. Clin. Gastroenterol. 2022, vol. 56(no. 4), 331–338. [Google Scholar] [CrossRef]
- Urits, M. Borchart, M. Hasegawa, J. Kochanski, V. Orhurhu, and O. Viswanath, “An update of current cannabis-based pharmaceuticals in pain medicine,” Pain Ther., vol. 8, no. 1, pp. 41–51, 2019. [CrossRef]
- Rosenberg, E. C.; Tsien, R. W.; Whalley, B. J.; Devinsky, O. Cannabinoids and epilepsy. Neurotherapeutics 2015, vol. 12(no. 4), 747–768. [Google Scholar] [CrossRef] [PubMed]
- Kanabus, J.; Bryła, M.; Roszko, M.; Modrzewska, M.; Pierzgalski, A. Cannabinoids—characteristics and potential for use in food production. Molecules 2021, vol. 26(no. 21), 6723. [Google Scholar] [CrossRef]
- Kuzumi, A. Yoshizaki-Ogawa, T. Fukasawa, S. Sato, and A. Yoshizaki, “The potential role of cannabidiol in cosmetic dermatology: A literature review,” Am. J. Clin. Dermatol., vol. 25, no. 6, pp. 951–966, 2024. [CrossRef]
- Antoniou, T.; Juurlink, D. N. Synthetic cannabinoids. Can. Med. Assoc. J. 2014, vol. 186, E210. [Google Scholar] [CrossRef]
- Castiglioni, S.; Griffiths, P. Assessing Illicit Drugs in Wastewater: Advances in wastewater-Based Drug Epidemiology; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Trofin, G.; Dabija, G.; Văireanu, D. I.; Filipescu, L. Long-term storage and cannabis oil stability. Rev. Chim. 2012, vol. 63, 293–297. [Google Scholar]
- García-Valverde, M. T.; Sánchez-Carnerero Callado, C.; Díaz-Liñán, M. C.; Sánchez de Medina, V.; Hidalgo-García, J.; Nadal, X.; Hanuš, L.; Ferreiro-Vera, C. Effect of temperature on the degradation of cannabinoids: From gas chromatography inlet to thermal treatments. Front. Chem. 2022, vol. 10, 1038729. [Google Scholar] [CrossRef]
- Moreno, S.; Trouten, A.; Richards-Waugh, L.; Quiñones, R. Photodegradation and stability of cannabinoids: Forensic and analytical implications. J. Forensic Sci. 2024, vol. 69, 905–918. [Google Scholar] [CrossRef]
- Kim, E.; Park, S.; Kinney, C.; Olejar, K.; Corredor-Perilla, C. Stability and degradation kinetics of cannabinoids under environmental stressors. Res. Sq. 2024, preprint. [Google Scholar]
- How, Z. T.; Gamal El-Din, M. A critical review on the detection, occurrence, fate, toxicity, and removal of cannabinoids in the water system and the environment. Environ. Pollut. 2021, vol. 268, 115642. [Google Scholar] [CrossRef]
- Apul, G.; Rowles, L. S.; Khalid, A.; Karanfil, T.; Richardson, S. D.; Saleh, N. B. Transformation potential of cannabinoids during their passage through engineered water treatment systems: A perspective. Environ. Int. 2020, vol. 137, 105586. [Google Scholar] [CrossRef] [PubMed]
- Selwe, K. P.; Sallach, J. B.; Dessent, C. E. H. Non-targeted screening of contaminants of emerging concern in the Glen Valley wastewater treatment plant, Botswana. Environ. Toxicol. Chem. 2024, vol. 43, 52–61. [Google Scholar] [CrossRef]
- Saleh, N. B.; Apul, O.; Karanfil, T. The Genesis of a Critical Environmental Concern: Cannabinoids in Our Water Systems. Environ. Sci. Technol. 2019, vol. 53, 1746–1747. [Google Scholar] [CrossRef]
- Milan, S.; Pedrazzi, M. R.; De Laurentiis, F.; Fanelli, F. P.; Castiglioni, S. Detection of eight cannabinoids and one tracer in wastewater and river water by SPE–UPLC–ESI–MS/MS. Water 2022, vol. 14(no. 4), 588. [Google Scholar] [CrossRef]
- B. J. Thomson, S. Hanna, A. Schwarzenberg, P. Kiani, D. Bizzotto, P. Kennepohl, A. Davies, M. Roggen, and G. M. Sammis,“CBD hydroxyquinone photo-isomerises to a highly reactive intermediate,” Sci. Rep., vol. 13, p. 6967, 2023. [CrossRef]
- Ahmed, R.; Zhou, Y.; Singh, P. Photodegradation of cannabidiol (CBD) and Δ⁹-THC in cannabis chemotypes. Photochem. Photobiol. Sci. 2024, vol. 23(no. 5), 1567–1578. [Google Scholar]
- Bini; Salerno, S.; Protti, S.; Pollastro, F.; Profumo, A.; Morini, L.; Merli, D. Photodegradation of cannabidiol (CBD) and Δ⁹-THC in cannabis plant material. Photochem. Photobiol. Sci. 2024, vol. 23, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Shah, D. UV light-induced transformations of minor cannabinoids: analytical and safety considerations. Cannabis Cannabinoid Res. 2023, vol. 8(no. 3), 234–243. [Google Scholar]
- Zamengo; Frison, M.; Greggio, M.; Frasson, L.; Sciarrone, R.; Franchini, S. Stability of cannabinoids in cannabis resin and cannabis preparations. Forensic Sci. Int. 2019, vol. 298, 400–409. [Google Scholar] [CrossRef]
- Taschwer, S.; Schmid, S.; Moosmann, M.; Knabl, S. Stability of Δ⁹-tetrahydrocannabinol in cannabis products under different storage and light conditions. Forensic Sci. Int. 2014, vol. 236, 73–79. [Google Scholar]
- Fairbairn, J. W.; Liebmann, J. A. The stability of cannabis and its preparations on storage. J. Pharm. Pharmacol. 1974, vol. 26(no. 9), 413–419. [Google Scholar] [CrossRef]
- Shani; Mechoulam, R. Photochemical reactions of cannabidiol in solution. Tetrahedron 1971, vol. 27, 559–565. [Google Scholar] [CrossRef]
- Munjal, M.; Garg, S. K.; Ranjan, R. K. Stability of Δ⁹-tetrahydrocannabinol in polymeric matrices. AAPS PharmSciTech 2006, vol. 7, E71. [Google Scholar] [CrossRef]
- Wong, N. G. K.; Rhodes, C.; Dessent, C. E. H. “Photodegradation of riboflavin under alkaline conditions: what can gas-phase photolysis tell us about what happens in solution?”. Molecules 2021, vol. 26(no. 19), 6009. [Google Scholar] [CrossRef]
- Insińska-Rak, M.; Prukała, D.; Golczak, A.; Fornal, E.; Sikorski, M. Riboflavin degradation products: combined photochemical and mass spectrometry approach. J. Photochem. Photobiol. A 2020, vol. 403, 112837. [Google Scholar] [CrossRef]
- Pahl, M.; Mayer, M.; Schneider, M.; Belder, D.; Asmis, K. R. Joining microfluidics with infrared photodissociation: online monitoring of isomeric flow-reaction intermediates. Anal. Chem. 2019, vol. 91, 3199–3203. [Google Scholar] [CrossRef] [PubMed]
- Cercola, R.; Wong, N. G. K.; Rhodes, C.; Olijnyk, L.; Mistry, N. S.; Hall, L. M.; Berenbeim, J. A.; Lynam, J. M.; Dessent, C. E. H. A one-pot mass spectrometry technique for characterizing solution- and gas-phase photochemical reactions by electrospray mass spectrometry. RSC Adv. 2021, vol. 11, 19500–19507. [Google Scholar] [CrossRef]
- Shiels, J.; Menti-Platten, M.; Bokosi, F. R. B.; Burns, B. R.; Keaveney, S. T.; Keller, P. A.; Barker, P. J.; Trevitt, A. J. A photoreactor-interfaced mass spectrometer: an online platform to monitor photochemical reactions. Anal. Chem. 2023, vol. 95, 15472–15476. [Google Scholar] [CrossRef] [PubMed]
- Ryu, R.; Islam, M. J.; Azad, M. O. K.; Go, E.-J.; Rahman, M. H.; Rana, M. S.; Lim, Y.-S.; Lim, J.-D. Conversion characteristics of some major cannabinoids from hemp (Cannabis sativa L.) raw materials by new rapid simultaneous analysis method. Molecules 2021, vol. 26(no. 14), 4113. [Google Scholar] [CrossRef]
- Wilson, S. A.; Alsalem, A.; Berden, G.; Oomens, J.; Dessent, C. E. H. Spectroscopic characterization of the photolysis of riboflavin (vitamin B2) via time-resolved mass spectrometry and IRMPD spectroscopy. J. Phys. Chem. A vol. 129(no. 23), 5082–5091, 2025. [CrossRef]
- Zulfiqar, F.; Navarro, I.; Ahmad, S.; Radwan, M. M.; Ali, Z.; Khan, I. A.; ElSohly, M. A. Cannabisol, a methylene-bridged Δ⁹-tetrahydrocannabinol dimer isolated from Cannabis sativa. Tetrahedron Lett. 2012, vol. 53, 3560–3562. [Google Scholar] [CrossRef] [PubMed]
- G. Chianese, S. Subramaniam, A. Basile, S. Gerosa, F. Pollastro, A. Profumo, L. De Petrocellis, and V. Di Marzo, “Cannabitwinol, a dimeric phytocannabinoid from hemp (Cannabis sativa L.),” J. Nat. Prod., vol. 83, pp. 2727–2736, 2020. [CrossRef]
- Stryker, Z.; Castillo-Arellano, J. I.; Cutler, S. J.; Wyatt, M. D.; León, F. Semi-synthesis of dimeric cannabidiol derivatives and evaluation of their affinity at neurological targets. J. Nat. Prod. vol. 88, 397–414, 2025. [CrossRef]
- Selwe, K. P.; Shaikh, A. S. A.; Uleanya, K. O.; Dessent, C. E. H. Fragmentation and isomerization pathways of natural and synthetic cannabinoids studied via higher collisional energy dissociation profiles. Molecules vol. 30, 717, 2025. [CrossRef]
- Fan, Y.; Zong, X.; Liu, J.; Ke, X.; Huang, Z.; Xu, Y. Development of a fragmentation pattern of synthetic cannabinoids based on electrospray ionization mass spectrometry in positive ion mode to screen synthetic cannabinoids in illicit products. J. Pharm. Biomed. Anal. 2021, vol. 193, 113723. [Google Scholar] [CrossRef]
- Sekuła, K.; Zuba, D.; Lorek, K. Analysis of fragmentation pathways of new-generation synthetic cannabinoids using electrospray ionization. J. Am. Soc. Mass Spectrom. 2018, vol. 29, 1941–1950. [Google Scholar] [CrossRef]
- Mahmoud, R.; Khajavinia, A.; Barzegar, S.; Purves, R. W.; LaPrairie, R. Establishment of tandem mass spectrometric fingerprint of the most common phytocannabinoids in electrospray ionization in positive ion mode. Rapid Commun. Mass Spectrom. vol. 39(no. 4), e9952, 2025. [CrossRef]
- Sereli, M. Investigating the photodegradation of organic sunscreens in the gas phase and in solution: towards natural alternatives as means of photoprotection. M.Sc. by Research Thesis, University of York, York, UK, 2022. Available online: https://etheses.whiterose.ac.uk/id/eprint/31107/.
- Cercola, R.; Matthews, E.; Dessent, C. E. H. Photoexcitation of adenosine 5′-triphosphate anions in vacuo: probing the influence of charge state on the UV photophysics of adenine. J. Phys. Chem. B 2017, vol. 121(no. 22), 5553–5561. [Google Scholar] [CrossRef]
- Wong, N. G. K.; Berenbeim, J. A.; Dessent, C. E. H. Direct observation of photochemical free radical production from the sunscreen 2-phenylbenzimidazole-5-sulfonic acid via laser-interfaced mass spectrometry. ChemPhotoChem 2019, vol. 3, 1231–1237. [Google Scholar] [CrossRef]
- Allwardt, J.; Cook, L. F.; Razdan, R. K. Photochemical degradation of Δ⁹-tetrahydrocannabinol. J. Pharm. Sci. 1972, vol. 61, 185–187. [Google Scholar]
- Marzullo, P.; Foschi, F.; Coppini, D. A.; Fanchini, F.; Magnani, L.; Rusconi, S.; Luzzani, M.; Passarella, D. Cannabidiol as the substrate in acid-catalyzed intramolecular cyclization. J. Nat. Prod. 2020, vol. 83, 2894–2901. [Google Scholar] [CrossRef] [PubMed]
- Golombek, P.; Müller, C.; Barthlott, I.; Sproll, C.; Lachenmeier, D. W. Conversion of cannabidiol (CBD) into psychotropic cannabinoids under acidic conditions: a review. Front. Pharmacol. 2020, vol. 11, 583275. [Google Scholar] [CrossRef]
- Bröcker, S.; Pragst, F. Isomerization of cannabidiol and Δ⁹-tetrahydrocannabinol during positive electrospray ionization: in-source H/D exchange by FI-QTOF-MS. Rapid Commun. Mass Spectrom. 2012, vol. 26, 1676–1686. [Google Scholar] [CrossRef]
- Boix, C.; Ibáñez, M.; Sancho, J. V.; Hernández, F. Photodegradation of the main THC metabolite (THC-COOH) in surface waters under UV and simulated sunlight. Chemosphere 2014, vol. 117, 203–210. [Google Scholar] [CrossRef]
- Zivovinovic, S.; Alder, R.; Allenspach, M. D.; Steuer, C.; Mahatthanatrakul, W.; Rattarom, R.; Liawruangrath, S.; Liawruangrath, B.; Pyne, S. G.; Korth, J.; Zuba, D.; Lorek, K. Determination of cannabinoids in Cannabis sativa L. samples by UHPLC–UV–MS: stability studies of acidic cannabinoids under thermal and UV stress. Anal. Bioanal. Chem. 2018, vol. 410, 6305–6316. [Google Scholar] [CrossRef]
- Tseng, C.-M.; Lee, Y.-T.; Ni, C.-K. H atom elimination from the πσ state in the photodissociation of phenol. J. Chem. Phys. 2004, 121, 2459–2461. [Google Scholar] [CrossRef]
- Iqbal and V. G. Stavros, Exploring the time scales of H-atom elimination from photoexcited indole and related heteroaromatics, J. Phys. Chem. A, 113, 8157–8163, 2009. [CrossRef]
- Seccamani, P.; Protti, S.; Pollastro, F.; Profumo, A.; Merli, D. Photochemistry of cannabidiol (CBD) revised: A combined preparative and spectrometric investigation. J. Nat. Prod. 2021, vol. 84, 2356–2366. [Google Scholar] [CrossRef]
- Matthews, E.; Dessent, C. E. H. Locating the proton in nicotinamide protomers via low-resolution UV action spectroscopy of electrosprayed solutions. J. Phys. Chem. A 2016, vol. 120, 9209–9216. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C. S.; Blanksby, S. J.; Trevitt, A. J. Ultraviolet photodissociation action spectroscopy of gas-phase protonated quinoline and isoquinoline cations. Phys. Chem. Chem. Phys. 2015, vol. 17, 25882–25890. [Google Scholar] [CrossRef]
- Ke, X.; Chen, X.; Chen, X.; Wu, H.; Fan, Y.; Xu, Y.; Xu, J. Differentiating Δ8-THC and Δ9-THC isomers: Mass spectrometry analysis and computational explanation. Rapid Commun. Mass Spectrom. vol. 40(no. 5), e70011, 2025. [CrossRef] [PubMed]














| m/z | THC_No Phot | THC_280 nm | THC_365 nm | CBD_No Phot | CBD_280 nm | CBD_365 nm |
|---|---|---|---|---|---|---|
| 113 | ✓ | ✓ (s) | ✗ | ✗ | ✓(s) | ✓ |
| 179 | ✓a | ✗ | ✓ a | ✓ a | ✗ | ✓a |
| 191 | ✓a | ✗ | ✓ a | ✗ | ✗ | ✗ |
| 207 | ✗ | ✓ (s) | ✗ | ✗ | ✓ (s) | ✓ |
| 245 | ✓ a | ✗ | ✓ a | ✓ a | ✗ | ✓a |
| 253 | ✓ | ✓ (s) | ✗ | ✗ | ✓ (s) | ✓ |
| 289 | ✓ | ✓ (s) | ✓ | ✗ | ✓ (v.s) | ✓ |
| 311 | ✓ a | ✗ | ✓ a | ✓ a | ✗ | ✓a |
| 313* | ✓ (v.s) | ✗ | ✓ (v.s) | ✓ (v.s) | ✗ | ✓ (v.s) |
| 345 | ✗ | ✓ (v.s) | ✗ | ✗ | ✓ (v.s) | ✗ |
| 359 | ✗ | ✓ (w) | ✗ | ✗ | ✓ (v.s) | ✗ |
| 363 | ✗ | ✓ (w) | ✗ | ✗ | ✓ (v.s) | ✗ |
| 375 | ✗ | ✓ (v.s) | ✗ | ✗ | ✓ (v.s) | ✗ |
| 381 | ✗ | ✓ (v.s) | ✗ | ✗ | ✓ (w) | ✗ |
| 389 | ✗ | ✓ (w) | ✗ | ✗ | ✓ (v.s) | ✗ |
| 391 | ✗ | ✓ (s) | ✗ | ✗ | ✓ (s) | ✗ |
| 393 | ✗ | ✓ (v.s) | ✗ | ✗ | ✓ (w) | ✗ |
| 407 | ✗ | ✓ (s) | ✗ | ✗ | ✓ (s) | ✗ |
| 477 | ✗ | ✓ (w) | ✗ | ✗ | ✓ (s) | ✗ |
| 479 | ✗ | ✓ (w) | ✗ | ✗ | ✓ (s) | ✗ |
| 481 | ✗ | ✓ (s) | ✗ | ✗ | ✓ (s) | ✗ |
| 509 | ✗ | ✓ (s) | ✗ | ✗ | ✓ (w) | ✗ |
| 511 | ✗ | ✓ (v.s) | ✗ | ✗ | ✓ (w) | ✗ |
| 513 | ✗ | ✓ (s) | ✗ | ✗ | ✓ (w) | ✗ |
| 627** | ✓ (v.s) | ✗ | ✓ (v.s) | ✓ (v.s) | ✗ | ✓ (v.s) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
