Submitted:
28 January 2026
Posted:
29 January 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Basic Functions of DAXX
2.1. Molecular Structure and Functional Domain of Daxx
2.2. Nuclear Localization and Function of DAXX
3. Regulatory Mechanism of DAXX in Metabolism
3.1. Lipid Metabolism
3.2. Glycometabolism
3.3. Antioxidant Response
4. The Role of DAXX in the Aging Process
4.1. DNA Damage Repair
4.2. Maintenance of Telomeres
4.3. Oxidative Stress and Inflammatory Aging
5. The Role of DAXX in Inflammation and Immune Homeostasis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 4HB | Four-helix bundle |
| ACC | Acetyl-CoA carboxylase |
| ALT | Alternative lengthening of telomeres |
| AMPK | AMP-activated protein kinase |
| AR | Androgen receptor |
| ASK1 | Apoptosis signal-regulating kinase 1 |
| ATR | Ataxia telangiectasia and Rad3-related protein |
| ATRX | Alpha-thalassemia/mental retardation syndrome X-linked |
| CALML3-AS1 | CALML3 antisense RNA 1 |
| cGAS | Cyclic GMP-AMP synthase |
| CHK2 | Checkpoint kinase 2 |
| CK2 | Casein kinase 2 |
| CPT1A | Carnitine palmitoyltransferase 1A |
| DAXX | Death domain-associated protein 6 |
| DGAT | Diacylglycerol acyltransferase |
| DNMT1 | DNA methyltransferase 1 |
| DSB | DNA double-strand break |
| ERV | Endogenous retrovirus |
| FASN | Fatty acid synthase |
| G6Pase | Glucose-6-phosphatase |
| GLUT | Glucose transporter |
| H3.3 | Histone H3 variant 3 |
| H3K4me3 | Trimethylation of histone H3 lysine 4 |
| H3K9me3 | Trimethylation of histone H3 lysine 9 |
| HDAC | Histone deacetylase |
| HBD | Histone-binding domain |
| HK | Hexokinase |
| HMGCR | 3-hydroxy-3-methylglutaryl-CoA reductase |
| HMGCS1 | 3-hydroxy-3-methylglutaryl-CoA synthase 1 |
| IFN-I | Type I interferon |
| JNK | c-Jun N-terminal kinase |
| KEAP1 | Kelch-like ECH-associated protein 1 |
| KIF5B | Kinesin family member 5B |
| LDLR | Low-density lipoprotein receptor |
| LLPS | Liquid–liquid phase separation |
| MASLD | Metabolic dysfunction-associated steatotic liver disease |
| MASH | Metabolic dysfunction-associated steatohepatitis |
| MDM2 | Mouse double minute 2 homolog |
| MPK38 | Maternal embryonic leucine zipper kinase (MELK) |
| mTOR | Mechanistic target of rapamycin |
| NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| Nrf2 | Nuclear factor erythroid 2-related factor 2 |
| PB1 | Phox and Bem1 domain |
| PEPCK | Phosphoenolpyruvate carboxykinase |
| PFK1 | Phosphofructokinase 1 |
| PK | Pyruvate kinase |
| PML | Promyelocytic leukemia protein |
| PML-NB | Promyelocytic leukemia nuclear body |
| PPARγ | Peroxisome proliferator-activated receptor gamma |
| RASSF1C | Ras association domain family member 1C |
| ROS | Reactive oxygen species |
| SCAP | SREBP cleavage-activating protein |
| SCD1 | Stearoyl-CoA desaturase 1 |
| SIM | SUMO-interacting motif |
| SQSTM1 | Sequestosome 1 |
| SREBP | Sterol regulatory element-binding protein |
| STING | Stimulator of interferon genes |
| SUMO | Small ubiquitin-like modifier |
| TAG | Triacylglycerol |
| TERRA | Telomeric repeat-containing RNA |
| TIN2 | TRF1-interacting nuclear factor 2 |
| TCR | T cell receptor |
References
- Kim, H H; Dixit, V D. Metabolic regulation of immunological aging[J]. Nature Aging 2025, 5(8), 1425–1440. [Google Scholar] [CrossRef]
- Franceschi, C; Garagnani, P; Parini, P; et al. Inflammaging: a new immune-metabolic viewpoint for age-related diseases[J]. Nature Reviews. Endocrinology 2018, 14(10), 576–590. [Google Scholar] [CrossRef]
- Allis, C D; Jenuwein, T. The molecular hallmarks of epigenetic control[J]. Nature Reviews. Genetics 2016, 17(8), 487–500. [Google Scholar] [CrossRef]
- Choi, J; Kim, T; Cho, E J. HIRA vs. DAXX: The two axes shaping the histone H3.3 landscape[J]. Experimental & Molecular Medicine 2024, 56(2), 251–263. [Google Scholar]
- Mahmud, I; Tian, G; Wang, J; et al. DAXX drives de novo lipogenesis and contributes to tumorigenesis[J]. Nature Communications 2023, 14(1), 1927. [Google Scholar] [CrossRef] [PubMed]
- Lewis, P W; Elsaesser, S J; Noh, K M; et al. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres[J]. Proceedings of the National Academy of Sciences of the United States of America 2010, 107(32), 14075–14080. [Google Scholar] [CrossRef]
- Wasylishen, A R; Sun, C; Moyer, S M; et al. Daxx maintains endogenous retroviral silencing and restricts cellular plasticity in vivo[J]. Science Advances 2020, 6(32), eaba8415. [Google Scholar] [CrossRef] [PubMed]
- Kiriakidou, M; Driscoll, D A; Lopez-Guisa, J M; et al. Cloning and expression of primate daxx cDNAs and mapping of the human gene to chromosome 6p21.3 in the MHC region[J]. DNA and cell biology 1997, 16(11), 1289–1298. [Google Scholar] [CrossRef]
- Yang, X; Khosravi-Far, R; Chang, H Y; et al. Daxx, a novel fas-binding protein that activates JNK and apoptosis[J]. Cell 1997, 89(7), 1067–1076. [Google Scholar] [CrossRef]
- Escobar-Cabrera, E; Lau, D K W; Giovinazzi, S; et al. Structural characterization of the DAXX N-terminal helical bundle domain and its complex with Rassf1C[J]. Structure (London, England: 1993) 2010, 18(12), 1642–1653. [Google Scholar] [CrossRef]
- Clatterbuck Soper, S F; Walker, R L; Pineda, M A; et al. Cancer-associated DAXX mutations reveal a critical role for ATRX localization in ALT suppression[J/OL]. bioRxiv: The Preprint Server for Biology 2024, 2024.11.18.624165. [Google Scholar] [CrossRef]
- Mahmud, I; Liao, D. DAXX in cancer: Phenomena, processes, mechanisms and regulation[J]. Nucleic Acids Research 2019, 47(15), 7734–7752. [Google Scholar] [CrossRef]
- Bogolyubova, I; Bogolyubov, D. DAXX is a crucial factor for proper development of mammalian oocytes and early embryos[J]. International Journal of Molecular Sciences 2021, 22(3), 1313. [Google Scholar] [CrossRef] [PubMed]
- Lin, D Y; Huang, Y S; Jeng, J C; et al. Role of SUMO-interacting motif in daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors[J]. Molecular Cell 2006, 24(3), 341–354. [Google Scholar] [CrossRef]
- Gao, J; Liu, T; Yang, D; et al. The dynamic regulation of daxx-mediated transcriptional inhibition by SUMO and PML NBs[J]. International journal of molecular sciences 2025, 26(14), 6703. [Google Scholar] [CrossRef]
- Elsässer, S J; Huang, H; Lewis, P W; et al. DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition[J]. Nature 2012, 491(7425), 560–565. [Google Scholar] [CrossRef] [PubMed]
- Chang, H Y; Nishitoh, H; Yang, X; et al. Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein daxx[J]. Science (New York, N.Y.) 1998, 281(5384), 1860–1863. [Google Scholar] [CrossRef]
- Pan, W W; Zhou, J J; Liu, X M; et al. Death domain-associated protein DAXX promotes ovarian cancer development and chemoresistance[J]. The Journal of Biological Chemistry 2013, 288(19), 13620–13630. [Google Scholar] [CrossRef]
- Carraro, M; Hendriks, I A; Hammond, C M; et al. DAXX adds a de novo H3.3K9me3 deposition pathway to the histone chaperone network[J]. Molecular Cell 2023, 83(7), 1075–1092.e9. [Google Scholar] [CrossRef]
- Yeung, P L; Chen, L Y; Tsai, S C; et al. Daxx contains two nuclear localization signals and interacts with importin alpha3[J]. Journal of Cellular Biochemistry 2008, 103(2), 456–470. [Google Scholar] [CrossRef]
- Trier, I; Black, E M; Joo, Y K; et al. ATR protects centromere identity by promoting DAXX association with PML nuclear bodies[J]. Cell Reports 2023, 42(5), 112495. [Google Scholar] [CrossRef]
- Torii, S; Egan, D A; Evans, R A; et al. Human daxx regulates fas-induced apoptosis from nuclear PML oncogenic domains (PODs)[J]. The EMBO journal 1999, 18(21), 6037–6049. [Google Scholar] [CrossRef]
- Chang, F T M; McGhie, J D; Chan, F L; et al. PML bodies provide an important platform for the maintenance of telomeric chromatin integrity in embryonic stem cells[J]. Nucleic Acids Research 2013, 41(8), 4447–4458. [Google Scholar] [CrossRef]
- Chen, C; Sun, X; Xie, W; et al. Opposing biological functions of the cytoplasm and nucleus DAXX modified by SUMO-2/3 in gastric cancer[J]. Cell Death & Disease 2020, 11(7), 514. [Google Scholar]
- Santiago, A; Godsey, A C; Hossain, J; et al. Identification of two independent SUMO-interacting motifs in daxx: evolutionary conservation from drosophila to humans and their biochemical functions[J]. Cell Cycle (Georgetown, Tex.) 2009, 8(1), 76–87. [Google Scholar] [CrossRef]
- Vladimirova, O; De Leo, A; Deng, Z; et al. Phase separation and DAXX redistribution contribute to LANA nuclear body and KSHV genome dynamics during latency and reactivation[J]. PLoS pathogens 2021, 17(1), e1009231. [Google Scholar] [CrossRef]
- Mascle, X H; Gagnon, C; Wahba, H M; et al. Acetylation of SUMO1 alters interactions with the SIMs of PML and daxx in a protein-specific manner[J]. Structure (london, England: 1993) 2020, 28(2), 157–168.e5. [Google Scholar] [CrossRef] [PubMed]
- Dorosz, K; Majewska, L; Kijowski, J. Structure and function of PML nuclear bodies: a brief overview of key cellular roles[J]. Biomolecules 2025, 15(9), 1291. [Google Scholar] [CrossRef] [PubMed]
- Abou-Ghali, M; Lallemand-Breitenbach, V. PML nuclear bodies: the cancer connection and beyond[J]. Nucleus (austin, Tex.) 2024, 15(1), 2321265. [Google Scholar] [CrossRef] [PubMed]
- Lin, D Y; Fang, H I; Ma, A H; et al. Negative modulation of androgen receptor transcriptional activity by daxx[J]. Molecular and Cellular Biology 2004, 24(24), 10529–10541. [Google Scholar] [CrossRef]
- Jung, Y S; Kim, H Y; Kim, J; et al. Physical interactions and functional coupling between daxx and sodium hydrogen exchanger 1 in ischemic cell death[J]. Journal of Biological Chemistry 2008, 283(2), 1018–1025. [Google Scholar] [CrossRef]
- Xiong, G; Li, L; Sun, S; et al. Subcellular localization of DAXX influence ox-LDL induced apoptosis in macrophages[J]. Molecular Biology Reports 2014, 41(11), 7183–7190. [Google Scholar] [CrossRef]
- Gulve, N; Su, C; Deng, Z; et al. DAXX-ATRX regulation of p53 chromatin binding and DNA damage response[J]. Nature Communications 2022, 13(1), 5033. [Google Scholar] [CrossRef]
- Pinto, L M; Pailas, A; Bondarchenko, M; et al. DAXX promotes centromeric stability independently of ATRX by preventing the accumulation of R-loop-induced DNA double-stranded breaks[J]. Nucleic Acids Research 2023, 52(3), 1136–1155. [Google Scholar] [CrossRef] [PubMed]
- Salsman, J; Rapkin, L M; Margam, N N; et al. Myogenic differentiation triggers PML nuclear body loss and DAXX relocalization to chromocentres[J]. Cell Death and Disease 2017, 8(3), e2724. [Google Scholar] [CrossRef] [PubMed]
- Kalra, S; Unnikrishnan, A G; Baruah, M P; et al. Metabolic and energy imbalance in dysglycemia-based chronic disease[J]. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2021, 14, 165–184. [Google Scholar] [CrossRef]
- H L, S W, J W, et al. Energy metabolism in health and diseases[J]. Signal Transduction and Targeted Therapy 2025, 10(1), 1–71.
- Chandel, N S. Lipid metabolism[J]. Cold Spring Harbor Perspectives in Biology 2021, 13(9), a040576. [Google Scholar] [CrossRef]
- Hotamisligil, G S. Inflammation, metaflammation and immunometabolic disorders[J]. Nature 2017, 542(7640), 177–185. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J; Lo, C H. Editorial: Lipid metabolism dysregulation in obesity-related diseases and neurodegeneration[J]. Frontiers in Endocrinology 2025, 16, 1564003. [Google Scholar] [CrossRef]
- Samuel, V T; Shulman, G I. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux[J]. Journal of Clinical Investigation 2016, 126(1), 12–22. [Google Scholar] [CrossRef]
- Brown, M S; Goldstein, J L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor[J]. Cell 1997, 89(3), 331–340. [Google Scholar] [CrossRef] [PubMed]
- Lee, S H; Lee, J H; Im, S S. The cellular function of SCAP in metabolic signaling[J]. Experimental & Molecular Medicine 2020, 52(5), 724–729. [Google Scholar]
- Horton, J D; Goldstein, J L; Brown, M S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver[J]. Journal of Clinical Investigation 2002, 109(9), 1125–1131. [Google Scholar] [CrossRef]
- Chandrasekaran, P; Weiskirchen, R. The role of SCAP/SREBP as central regulators of lipid metabolism in hepatic steatosis[J]. International journal of molecular sciences 2024, 25(2), 1109. [Google Scholar] [CrossRef]
- Zhao, Q; Lin, X; Wang, G. Targeting SREBP-1-mediated lipogenesis as potential strategies for cancer[J]. Frontiers in Oncology 2022, 12, 952371. [Google Scholar] [CrossRef]
- Eberlé, D; Hegarty, B; Bossard, P; et al. SREBP transcription factors: master regulators of lipid homeostasis[J]. Biochimie 2004, 86(11), 839–848. [Google Scholar] [CrossRef]
- Li, T P; Sun, S W; Xiong, G Z; et al. Direct interaction of daxx and androgen receptor is required for their regulatory activity in cholesterol biosynthesis[J]. Pharmacology 2021, 106(1-2), 29–36. [Google Scholar] [CrossRef]
- Swinnen, J V; Verhoeven, G. Androgens and the control of lipid metabolism in human prostate cancer cells[J]. Journal of Steroid Biochemistry and Molecular Biology 1998, 65(1-6), 191–198. [Google Scholar] [CrossRef] [PubMed]
- Vertegaal, A C O. Signalling mechanisms and cellular functions of SUMO[J]. Nature Reviews. Molecular Cell Biology 2022, 23(11), 715–731. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T; Fan, J; Abu-Zaid, A; et al. Nuclear mTOR signaling orchestrates transcriptional programs underlying cellular growth and metabolism[J]. Cells 2024, 13(9), 781. [Google Scholar] [CrossRef]
- Hajirahimkhan, A; Brown, K A; Clare, S E; et al. SREBP1-dependent metabolism as a potential target for breast cancer risk reduction[J]. Cancers 2025, 17(10), 1664. [Google Scholar] [CrossRef]
- Anand, S; Patel, T N. Integrating the metabolic and molecular circuits in diabetes, obesity and cancer: A comprehensive review[J]. Discover Oncology 2024, 15(1), 779. [Google Scholar] [CrossRef]
- Rong, S; Xia, M; Vale, G; et al. DGAT2 inhibition blocks SREBP-1 cleavage and improves hepatic steatosis by increasing phosphatidylethanolamine in the ER[J]. Cell Metabolism 2024, 36(3), 617–629.e7. [Google Scholar] [CrossRef]
- Juhl, A D; Wüstner, D. Pathways and mechanisms of cellular cholesterol efflux-insight from imaging[J]. Frontiers in Cell and Developmental Biology 2022, 10, 834408. [Google Scholar] [CrossRef]
- Chen, L; Zhao, Z W; Zeng, P H; et al. Molecular mechanisms for ABCA1-mediated cholesterol efflux[J]. Cell Cycle (Georgetown, Tex.) 2022, 21(11), 1121–1139. [Google Scholar] [CrossRef] [PubMed]
- Parton, R G; del Pozo, M A. Caveolae as plasma membrane sensors, protectors and organizers[J]. Nature Reviews. Molecular Cell Biology 2013, 14(2), 98–112. [Google Scholar] [CrossRef]
- Tuo, Q H; Liang, L; Zhu, B Y; et al. Effect of daxx on cholesterol accumulation in hepatic cells[J]. World Journal of Gastroenterology 2008, 14(3), 435–440. [Google Scholar] [CrossRef] [PubMed]
- Schlaepfer, I R; Joshi, M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential[J]. Endocrinology 2020, 161(2), bqz046. [Google Scholar] [CrossRef] [PubMed]
- Fang, C; Pan, J; Qu, N; et al. The AMPK pathway in fatty liver disease[J]. Frontiers in Physiology 2022, 13, 970292. [Google Scholar] [CrossRef]
- Seong, H A; Manoharan, R; Ha, H. DAXX ameliorates metabolic dysfunction in mice with diet-induced obesity by activating the AMP-activated protein kinase-related kinase MPK38/MELK[J]. Biochemical and Biophysical Research Communications 2021, 572, 164–170. [Google Scholar] [CrossRef]
- Ramatchandirin, B; Pearah, A; He, L. Regulation of liver glucose and lipid metabolism by transcriptional factors and coactivators[J]. Life (Basel, Switzerland) 2023, 13(2), 515. [Google Scholar] [CrossRef]
- Han, H S; Kang, G; Kim, J S; et al. Regulation of glucose metabolism from a liver-centric perspective[J]. Experimental & Molecular Medicine 2016, 48(3), e218. [Google Scholar]
- Drobiova, H; Alhamar, G; Ahmad, R; et al. GLUT4 trafficking and storage vesicles: molecular architecture, regulatory networks, and their disruption in insulin resistance[J]. International journal of molecular sciences 2025, 26(15), 7568. [Google Scholar] [CrossRef]
- Richter, E A; Bilan, P J; Klip, A. A comprehensive view of muscle glucose uptake: Regulation by insulin, contractile activity, and exercise[J]. Physiological Reviews 2025, 105(3), 1867–1945. [Google Scholar] [CrossRef]
- Knudsen, J R; Persson, K W; Henriquez-Olguin, C; et al. Microtubule-mediated GLUT4 trafficking is disrupted in insulin-resistant skeletal muscle[J]. eLife 2023, 12, e83338. [Google Scholar] [CrossRef] [PubMed]
- Mao, G; Liu, J. CALML3-AS1 enhances malignancies and stemness of small cell lung cancer cells through interacting with DAXX protein and promoting GLUT4-mediated aerobic glycolysis[J]. Toxicology and Applied Pharmacology 2025, 495, 117177. [Google Scholar] [CrossRef] [PubMed]
- Lalioti, V S; Vergarajauregui, S; Tsuchiya, Y; et al. Daxx functions as a scaffold of a protein assembly constituted by GLUT4, JNK1 and KIF5B[J]. Journal of Cellular Physiology 2009, 218(2), 416–426. [Google Scholar] [CrossRef]
- van Gerwen, J; Shun-Shion, A S; Fazakerley, D J. Insulin signalling and GLUT4 trafficking in insulin resistance[J]. Biochemical Society Transactions 2023, 51(3), 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Lunt, S Y; Vander Heiden, M G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation[J]. Annual Review of Cell and Developmental Biology 2011, 27, 441–464. [Google Scholar] [CrossRef]
- Zhao, J; Jin, D; Huang, M; et al. Glycolysis in the tumor microenvironment: A driver of cancer progression and a promising therapeutic target[J]. Frontiers in Cell and Developmental Biology 2024, 12, 1416472. [Google Scholar] [CrossRef]
- Knorr, S; Skakkebæk, A; Just, J; et al. Epigenetic and transcriptomic alterations in offspring born to women with type 1 diabetes (the EPICOM study)[J]. BMC medicine 2022, 20(1), 338. [Google Scholar] [CrossRef]
- Wang, H; Fan, Z; Shliaha, P V; et al. H3K4me3 regulates RNA polymerase II promoter-proximal pause-release[J]. Nature 2023, 615(7951), 339–348. [Google Scholar] [CrossRef]
- Pandya Thakkar, N; Pereira, B M V; Katakia, Y T; et al. Elevated H3K4me3 through MLL2-WDR82 upon hyperglycemia causes jagged ligand dependent notch activation to interplay with differentiation state of endothelial cells[J]. Frontiers in Cell and Developmental Biology 2022, 10, 839109. [Google Scholar] [CrossRef]
- Zhong, W; Hong, C; Zhang, Y; et al. ASH2L-mediated H3K4me3 drives diabetic nephropathy through HIPK2 and Notch1 pathway[J]. Translational Research: the Journal of Laboratory and Clinical Medicine 2024, 264, 85–96. [Google Scholar] [CrossRef]
- Zhang, X; Yang, S; Chen, J; et al. Unraveling the Regulation of Hepatic Gluconeogenesis[J]. Frontiers in Endocrinology 2018, 9, 802. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q. Role of nrf2 in oxidative stress and toxicity[J]. Annual Review of Pharmacology and Toxicology 2013, 53, 401–426. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease[J]. Cell 2010, 140(6), 900–917. [Google Scholar] [CrossRef] [PubMed]
- Masenga, S K; Kabwe, L S; Chakulya, M; et al. Mechanisms of oxidative stress in metabolic syndrome[J]. International Journal of Molecular Sciences 2023, 24(9), 7898. [Google Scholar] [CrossRef]
- Fulda, S; Gorman, A M; Hori, O; et al. Cellular stress responses: cell survival and cell death[J]. International Journal of Cell Biology 2010, 2010, 214074. [Google Scholar] [CrossRef]
- Khelifi, A F; D’Alcontres, M S; Salomoni, P. Daxx is required for stress-induced cell death and JNK activation[J]. Cell Death & Differentiation 2005, 12(7), 724–733. [Google Scholar]
- Zhao, W; Zhuang, P; Chen, Y; et al. “double-edged sword” effect of reactive oxygen species (ROS) in tumor development and carcinogenesis[J]. Physiological Research 2023, 72(3), 301–307. [Google Scholar] [CrossRef]
- Sykiotis, G P; Bohmann, D. Stress-activated cap’n’collar transcription factors in aging and human disease[J]. Science Signaling 2010, 3(112), re3. [Google Scholar] [CrossRef] [PubMed]
- Sykiotis, G P. Keap1/Nrf2 signaling pathway[J]. Antioxidants 2021, 10(6), 828. [Google Scholar] [CrossRef]
- Yang, Y; Willis, T L; Button, R W; et al. Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress response[J]. Nature Communications 2019, 10(1), 3759. [Google Scholar] [CrossRef]
- Xia, Q; Li, Y; Xu, W; et al. Enhanced liquidity of p62 droplets mediated by Smurf1 links Nrf2 activation and autophagy[J]. Cell & Bioscience 2023, 13(1), 37. [Google Scholar]
- Huang, X; Zhang, J; Yao, J; et al. Phase separation of p62: roles and regulations in autophagy[J]. Trends in Cell Biology 2025, 35(10), 854–865. [Google Scholar] [CrossRef] [PubMed]
- Shreeya, T; Ansari, M S; Kumar, P; et al. Senescence: A DNA damage response and its role in aging and neurodegenerative diseases[J]. Frontiers in Aging 2023, 4, 1292053. [Google Scholar] [CrossRef]
- Rossiello, F; Jurk, D; Passos, J F; et al. Telomere dysfunction in ageing and age-related diseases[J]. Nature Cell Biology 2022, 24(2), 135–147. [Google Scholar] [CrossRef]
- Ngo, V; Duennwald, M L. Nrf2 and oxidative stress: a general overview of mechanisms and implications in human disease[J]. Antioxidants (Basel, Switzerland) 2022, 11(12), 2345. [Google Scholar] [CrossRef]
- Olivieri, F; Prattichizzo, F; Grillari, J; et al. Cellular senescence and inflammaging in age-related diseases[J]. Mediators of Inflammation 2018, 2018, 9076485. [Google Scholar] [CrossRef]
- López-Otín, C; Blasco, M A; Partridge, L; et al. The hallmarks of aging[J]. Cell 2013, 153(6), 1194–1217. [Google Scholar] [CrossRef]
- d’Adda di Fagagna, F. Living on a break: cellular senescence as a DNA-damage response[J]. Nature Reviews. Cancer 2008, 8(7), 512–522. [Google Scholar] [CrossRef]
- Gong, P; Guo, Z; Wang, S; et al. Histone phosphorylation in DNA damage response[J]. International Journal of Molecular Sciences 2025, 26(6), 2405. [Google Scholar] [CrossRef] [PubMed]
- Pan, W W; Yi, F P; Cao, L X; et al. DAXX silencing suppresses mouse ovarian surface epithelial cell growth by inducing senescence and DNA damage[J]. Gene 2013, 526(2), 287–294. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, R; Pandolfi, P P. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies[J]. Nature Reviews. Molecular Cell Biology 2007, 8(12), 1006–1016. [Google Scholar] [CrossRef]
- Dellaire, G; Ching, R W; Ahmed, K; et al. Promyelocytic leukemia nuclear bodies behave as DNA damage sensors whose response to DNA double-strand breaks is regulated by NBS1 and the kinases ATM, Chk2, and ATR[J]. The Journal of Cell Biology 2006, 175(1), 55–66. [Google Scholar] [CrossRef]
- Fernandez, A; O’Leary, C; O’Byrne, K J; et al. Epigenetic mechanisms in DNA double strand break repair: A clinical review[J]. Frontiers in Molecular Biosciences 2021, 8, 685440. [Google Scholar] [CrossRef] [PubMed]
- Li, H; Leo, C; Zhu, J; et al. Sequestration and inhibition of daxx-mediated transcriptional repression by PML[J]. Molecular and Cellular Biology 2000, 20(5), 1784–1796. [Google Scholar] [CrossRef]
- Juhász, S; Elbakry, A; Mathes, A; et al. ATRX promotes DNA repair synthesis and sister chromatid exchange during homologous recombination[J]. Molecular Cell 2018, 71(1), 11–24.e7. [Google Scholar] [CrossRef]
- Fan, H C; Chen, C M; Chi, C S; et al. Targeting telomerase and ATRX/DAXX inducing tumor senescence and apoptosis in the malignant glioma[J]. International Journal of Molecular Sciences 2019, 20(1), 200. [Google Scholar] [CrossRef]
- Teng, Y C; Sundaresan, A; O’Hara, R; et al. ATRX promotes heterochromatin formation to protect cells from G-quadruplex DNA-mediated stress[J]. Nature Communications 2021, 12(1), 3887. [Google Scholar] [CrossRef]
- Sato, K; Knipscheer, P. G-quadruplex resolution: from molecular mechanisms to physiological relevance[J]. DNA Repair 2023, 130, 103552. [Google Scholar] [CrossRef]
- Wulfridge, P; Sarma, K. Intertwining roles of R-loops and G-quadruplexes in DNA repair, transcription and genome organization[J]. Nature Cell Biology 2024, 26(7), 1025–1036. [Google Scholar] [CrossRef]
- Blackburn, E H. Telomeres and telomerase: the means to the end (nobel lecture)[J]. Angewandte Chemie (International Ed. in English) 2010, 49(41), 7405–7421. [Google Scholar] [CrossRef]
- Azzalin, C M. TERRA and the alternative lengthening of telomeres: A dangerous affair[J]. FEBS letters 2025, 599(2), 157–165. [Google Scholar] [CrossRef] [PubMed]
- Gauchier, M; Kan, S; Barral, A; et al. SETDB1-dependent heterochromatin stimulates alternative lengthening of telomeres[J]. Science Advances 2019, 5(5), eaav3673. [Google Scholar] [CrossRef] [PubMed]
- Carson, L M; Flynn, R L. Highlighting vulnerabilities in the alternative lengthening of telomeres pathway[J]. Current Opinion in Pharmacology 2023, 70, 102380. [Google Scholar] [CrossRef]
- Mishra, A; Patel, T N. Locking the gates of immortality: targeting alternative lengthening of telomeres (ALT) pathways[J]. Medical Oncology (Northwood, London, England) 2025, 42(3), 78. [Google Scholar] [CrossRef]
- Nera, B; Huang, H S; Lai, T; et al. Elevated levels of TRF2 induce telomeric ultrafine anaphase bridges and rapid telomere deletions[J]. Nature Communications 2015, 6(1), 10132. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P; Barnes, R; Pan, H; et al. TIN2 is an architectural protein that facilitates TRF2-mediated trans- and cis-interactions on telomeric DNA[J]. Nucleic Acids Research 2021, 49(22), 13000–13018. [Google Scholar] [CrossRef]
- S, Y; S L, F Z; et al. TIN2 deficiency leads to ALT-associated phenotypes and differentiation defects in embryonic stem cells[J]. Stem cell reports 2022, 17(5). [Google Scholar]
- Andonian, B J; Hippensteel, J A; Abuabara, K; et al. Inflammation and aging-related disease: a transdisciplinary inflammaging framework[J]. GeroScience 2025, 47(1), 515–542. [Google Scholar] [CrossRef]
- Ajoolabady, A; Pratico, D; Tang, D; et al. Immunosenescence and inflammaging: mechanisms and role in diseases[J]. Ageing Research Reviews 2024, 101, 102540. [Google Scholar] [CrossRef]
- Park, J; Lee, J H; La, M; et al. Inhibition of NF-κB acetylation and its transcriptional activity by daxx[J]. Journal of Molecular Biology 2007, 368(2), 388–397. [Google Scholar] [CrossRef] [PubMed]
- Croxton, R; Puto, L A; de Belle, I; et al. Daxx represses expression of a subset of antiapoptotic genes regulated by nuclear factor-kappaB[J]. Cancer Research 2006, 66(18), 9026–9035. [Google Scholar] [CrossRef] [PubMed]
- Singh, H; Gupta, R; Gupta, M; et al. Aging-induced alterations in microglial cells and their impact on neurodegenerative disorders[J]. Molecular Biology Reports 2025, 52(1), 515. [Google Scholar] [CrossRef]
- Li, Y; Zhan, B; Zhuang, X; et al. Microglial Pdcd4 deficiency mitigates neuroinflammation-associated depression via facilitating daxx mediated PPARγ/IL-10 signaling[J]. Journal of Neuroinflammation 2024, 21(1), 143. [Google Scholar] [CrossRef]
- Yao, Z; Zhang, Q; Li, X; et al. Death domain-associated protein 6 (daxx) selectively represses IL-6 transcription through histone deacetylase 1 (HDAC1)-mediated histone deacetylation in macrophages[J]. The Journal of Biological Chemistry 2014, 289(13), 9372–9379. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z; Liang, Q; Ren, Y; et al. Immunosenescence: Molecular mechanisms and diseases[J]. Signal Transduction and Targeted Therapy 2023, 8(1), 200. [Google Scholar] [CrossRef]
- Chaplin, D D. Overview of the immune response[J]. Journal of Allergy and Clinical Immunology 2010, 125((2) Suppl 2, S3–23. [Google Scholar] [CrossRef]
- Xu, Y; He, Z; Du, J; et al. Epigenetic modulations of immune cells: from normal development to tumor progression[J]. International Journal of Biological Sciences 2023, 19(16), 5120–5144. [Google Scholar] [CrossRef] [PubMed]
- Maillet, S; Fernandez, J; Decourcelle, M; et al. Daxx inhibits HIV-1 reverse transcription and uncoating in a SUMO-dependent manner[J]. Viruses 2020, 12(6), 636. [Google Scholar] [CrossRef]
- Boehmer, D; Zanoni, I. Interferons in health and disease[J]. Cell 2025, 188(17), 4480–4504. [Google Scholar] [CrossRef] [PubMed]
- Dopkins, N; Nixon, D F. Activation of human endogenous retroviruses and its physiological consequences[J]. Nature Reviews. Molecular Cell Biology 2024, 25(3), 212–222. [Google Scholar] [CrossRef] [PubMed]
- Mac Kain, A; Maarifi, G; Aicher, S M; et al. Identification of DAXX as a restriction factor of SARS-CoV-2 through a CRISPR/Cas9 screen[J]. Nature Communications 2022, 13(1), 2442. [Google Scholar] [CrossRef]
- Sood, A. The cGAS-STING axis: a comprehensive review from immune defense to disease pathogenesis[J]. Immunologic Research 2025, 73(1), 91. [Google Scholar] [CrossRef]
- Ivashkiv, L B; Donlin, L T. Regulation of type I interferon responses[J]. Nature Reviews. Immunology 2014, 14(1), 36–49. [Google Scholar] [CrossRef]
- Scherer, M; Read, C; Neusser, G; et al. Dual signaling via interferon and DNA damage response elicits entrapment by giant PML nuclear bodies[J]. eLife 2022, 11, e73006. [Google Scholar] [CrossRef]
- Daxx and HIRA go viral – How chromatin remodeling complexes affect DNA virus infection[Z].
- Chi, H; Pepper, M; Thomas, P G. Principles and therapeutic applications of adaptive immunity[J]. Cell 2024, 187(9), 2052–2078. [Google Scholar] [CrossRef]
- Li, J; Qian, L; Dowling, J P; et al. Daxx plays a novel role in T cell survival but is dispensable in fas-induced apoptosis[J]. PloS One 2017, 12(3), e0174011. [Google Scholar] [CrossRef] [PubMed]
- Medvedovic, J; Ebert, A; Tagoh, H; et al. Pax5: A master regulator of B cell development and leukemogenesis[J]. Advances in Immunology 2011, 111, 179–206. [Google Scholar]
- Emelyanov, A V; Kovac, C R; Sepulveda, M A; et al. The interaction of Pax5 (BSAP) with daxx can result in transcriptional activation in B cells[J]. The Journal of Biological Chemistry 2002, 277(13), 11156–11164. [Google Scholar] [CrossRef]
- Gongora, R; Stephan, R P; Zhang, Z; et al. An Essential Role for Daxx in the Inhibition of B Lymphopoiesis by Type I Interferons[J]. Immunity 2001, 14(6), 727–737. [Google Scholar] [CrossRef]
- HIRANO, T. Interleukin 6 in autoimmune and inflammatory diseases: A personal memoir[J]. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences 2010, 86(7), 717–730. [Google Scholar] [CrossRef]
- Ross, J B; Myers, L M; Noh, J J; et al. Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity[J]. Nature 2024, 628(8006), 162–170. [Google Scholar] [CrossRef] [PubMed]
- Chen, D S; Mellman, I. Elements of cancer immunity and the cancer-immune set point[J]. Nature 2017, 541(7637), 321–330. [Google Scholar] [CrossRef]
- Wang, Y; Zhu, Y; Cao, Y; et al. The activation of cGAS-STING pathway offers novel therapeutic opportunities in cancers[J]. Frontiers in Immunology 2025, 16, 1579832. [Google Scholar] [CrossRef]
- ZHU, X; HUANG, K; KAO, X; et al. Death domain-associated protein (daxx) impairs colon cancer chemotherapy by inhibiting the cGAS-STING pathway[J]. Oncology Research 2025, 33(5), 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Alandijany, T. Host intrinsic and innate intracellular immunity during herpes simplex virus type 1 (HSV-1) infection[J]. Frontiers in Microbiology 2019, 10, 2611. [Google Scholar] [CrossRef] [PubMed]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.