Submitted:
27 January 2026
Posted:
29 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Artificial Intelligence (AI) Technologies
2.1. Machine Learning
2.2. Deep Learning
2.3. Applications of AI in Drug Discovery and Development
3.3.1. Target Identification and Validation
3.3.2. De Novo Drug Design and Optimization
3.3.3. Preclinical Development
3.3.4. Clinical Development
4. Critical View: Limitations and Challenges of AI in Drug Discovery
4.1. Foundational Data Challenges
4.2. The "Black Box" Problem
3. Operational and Ethical Hurdles
5. Perspectives and Future Directions
5.1. Mitigating Data Limitations with Synthetic Data and Advanced Models
5.2. Toward Explainable AI and Robust Integration
5.3. The Push for Personalized Medicine and Multi-Omics Integration
5.4. Evolving Regulatory and Global Health Frameworks
6. Conclusion
Author Contributions
Funding
Conflict of Interests
Ethics approval and consent to participate
Consent for publication
References
- DiMasi, J. A.; Grabowski, H. G.; Hansen, R. W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econ 2016, vol. 47, 20–33. [Google Scholar] [CrossRef]
- Wouters, O. J.; McKee, M.; Luyten, J. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018. JAMA 2020, vol. 323(no. 9), 844–853. [Google Scholar] [CrossRef]
- S. M. Paul et al., How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 2010, vol. 9(no. 3), 203–214. [CrossRef]
- Murmu, A.; Győrffy, B. Artificial intelligence methods available for cancer research. Front Med 2024, vol. 18(no. 5), 778–797. [Google Scholar] [CrossRef]
- Lac, L.; Leung, C. K.; Hu, P. Computational frameworks integrating deep learning and statistical models in mining multimodal omics data. Journal of Biomedical Informatics 2024, vol. 152, 104629. [Google Scholar] [CrossRef]
- Y. Wang et al., XGraphCDS: An explainable deep learning model for predicting drug sensitivity from gene pathways and chemical structures. Computers in Biology and Medicine 2024, vol. 168, 107746. [CrossRef]
- Md. A. Islam, Md. Z. Hasan Majumder, Md. A. Hussein, K. M. Hossain, and Md. S. Miah, A review of machine learning and deep learning algorithms for Parkinson’s disease detection using handwriting and voice datasets. Heliyon 2024, vol. 10(no. 3), e25469. [CrossRef]
- Mak, K.-K.; Pichika, M. R. Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today 2019, vol. 24(no. 3), 773–780. [Google Scholar] [CrossRef] [PubMed]
- Chen, R. R. Chen et al., Transcriptome sequencing and functional characterization of new sesquiterpene synthases from Curcuma wenyujin. Archives of Biochemistry and Biophysics 2021, vol. 709, 108986. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Yang, B.; Duan, G.; Wang, J. ITRPCA: a new model for computational drug repositioning based on improved tensor robust principal component analysis. Front. Genet. 2023, vol. 14. [Google Scholar] [CrossRef] [PubMed]
- H. Shi et al., Absorption, Distribution, Metabolism, Excretion, and Toxicity Evaluation in Drug Discovery. 14. Prediction of Human Pregnane X Receptor Activators by Using Naive Bayesian Classification Technique. Chem. Res. Toxicol. 2015, vol. 28(no. 1), 116–125. [CrossRef] [PubMed]
- Ryu, J. Y.; Lee, J. H.; Lee, B. H.; Song, J. S.; Ahn, S.; Oh, K.-S. PredMS: a random forest model for predicting metabolic stability of drug candidates in human liver microsomes. Bioinformatics 2022, vol. 38(no. 2), 364–368. [Google Scholar] [CrossRef] [PubMed]
- P. N. Shiammala et al., Exploring the artificial intelligence and machine learning models in the context of drug design difficulties and future potential for the pharmaceutical sectors. Methods 2023, vol. 219, 82–94. [CrossRef]
- Y. Lei et al., A deep-learning framework for multi-level peptide–protein interaction prediction. Nat Commun 2021, vol. 12(no. 1), 5465. [CrossRef]
- F. Wang et al., Generating new protein sequences by using dense network and attention mechanism. MBE 2023, vol. 20(no. 2), 4178–4197. [CrossRef]
- Lim, S.; Lee, K.; Kang, J. Drug drug interaction extraction from the literature using a recursive neural network. PLOS ONE 2018, vol. 13(no. 1), e0190926. [Google Scholar] [CrossRef]
- Galindez, G.; Sadegh, S.; Baumbach, J.; Kacprowski, T.; List, M. Network-based approaches for modeling disease regulation and progression. Computational and Structural Biotechnology Journal 2023, vol. 21, 780–795. [Google Scholar] [CrossRef]
- Y. You et al., Artificial intelligence in cancer target identification and drug discovery. Sig Transduct Target Ther 2022, vol. 7(no. 1), 156. [CrossRef] [PubMed]
- V. Previtali et al., New Horizons of Synthetic Lethality in Cancer: Current Development and Future Perspectives. J. Med. Chem. 2024, vol. 67(no. 14), 11488–11521. [CrossRef]
- Wang, L.; Yan, Z.; Xiang, P.; Yan, L.; Zhang, Z. MR microneurography of human peripheral fascicles using a clinical 3T MR scanner. Journal of Neuroradiology 2023, vol. 50(no. 2), 253–257. [Google Scholar] [CrossRef]
- K. N, K. K, K. N, and K. K, Target identification and validation in research. World Journal of Biology Pharmacy and Health Sciences 2024, vol. 17(no. 3), 107–117. [CrossRef]
- A. Zhavoronkov et al., Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol 2019, vol. 37(no. 9), 1038–1040. [CrossRef]
- Zemnou, C. T.; Karim, E. M.; Chtita, S.; Zanchi, F. B. Impact of mutations on KAT6A enzyme and inhibitory potential of compounds from Withania somnifera using computational approaches. Computers in Biology and Medicine 2025, vol. 190, 110041. [Google Scholar] [CrossRef]
- Tepap Zemnou, C.; Anissi, J.; Bounou, S.; Zanchi, F. In Silico Approach for Assessment of the Anti-Tumor Potential of Cannabinoid Compounds by Targeting Glucose-6-Phosphate Dehydrogenase Enzyme. Chemistry & Biodiversity 2024, vol. 21, e202401338. [Google Scholar] [CrossRef]
- C. Tepap Zemnou, In silico Comparative Study of the Anti-Cancer Potential of Inhibitors of Glucose-6-Phosphate Dehydrogenase Enzyme Using ADMET Analysis, Molecular Docking, and Molecular Dynamic Simulation. Advanced Theory and Simulations vol. 8(no. 5), 2400757, 2025. [CrossRef]
- C. Tepap Zemnou and R. Ibrahim, Network Pharmacology-based Approach to Investigate the Mechanism of Folium Artemisiae Argyi in the Treatment of Hepatocellular Carcinoma. International Journal of Advancement in Life Sciences Research 2025, vol. 08, 74–94. [CrossRef]
- C. Tepap Zemnou, Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation Revealed the Molecular Targets and Potential Mechanism of Nauclea Latifolia in the Treatment of Breast Cancer. Chemistry & Biodiversity 2024, vol. 22, e202402423. [CrossRef]
- Lewis, R. A.; Sirockin, F. 2/3D Pharmacophore Definitions and Their Application. In in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2025. [Google Scholar] [CrossRef]
- V. D. Mouchlis et al., Advances in De Novo Drug Design: From Conventional to Machine Learning Methods. International Journal of Molecular Sciences 2021, vol. 22(no. 4), 1676. [CrossRef]
- Singh, S.; Kaur, N.; Gehlot, A. Application of artificial intelligence in drug design: A review. Computers in Biology and Medicine 2024, vol. 179, 108810. [Google Scholar] [CrossRef]
- T. Blaschke et al., REINVENT 2.0: An AI Tool for De Novo Drug Design. J. Chem. Inf. Model. 2020, vol. 60(no. 12), 5918–5922. [CrossRef]
- Bhisetti, G.; Fang, C. Artificial Intelligence–Enabled De Novo DesignDe novo designof Novel Compounds that Are Synthesizable. In Artificial Intelligence in Drug Design; Heifetz, A., Ed.; Springer US: New York, NY, 2022; pp. 409–419. [Google Scholar] [CrossRef]
- Wang, S.; Dong, G.; Sheng, C. Structural simplification: an efficient strategy in lead optimization. Acta Pharmaceutica Sinica B 2019, vol. 9(no. 5), 880–901. [Google Scholar] [CrossRef] [PubMed]
- L. R. de Souza Neto et al., In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Front. Chem. 2020, vol. 8. [CrossRef]
- Crucitti, D.; Pérez Míguez, C.; Díaz Arias, J. Á.; Fernandez Prada, D. B.; A. Mosquera Orgueira. De novo drug design through artificial intelligence: an introduction. Front. Hematol. 2024, vol. 3. [Google Scholar] [CrossRef]
- Sarvepalli, S.; Vadarevu, S. Role of artificial intelligence in cancer drug discovery and development. Cancer Letters 2025, vol. 627, 217821. [Google Scholar] [CrossRef]
- Pires, D. E. V.; Blundell, T. L.; Ascher, D. B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, vol. 58(no. 9), 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- H. Yang et al., admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2019, vol. 35(no. 6), 1067–1069. [CrossRef]
- Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. DeepTox: Toxicity prediction using deep learning. Front. Environ. Sci. 2016, vol. 3, no. FEB. [Google Scholar] [CrossRef]
- P. Kamya et al., PandaOmics: An AI-Driven Platform for Therapeutic Target and Biomarker Discovery. J Chem Inf Model 2024, vol. 64(no. 10), 3961–3969. [CrossRef]
- Z. Zhang et al., Identifying tumor markers-stratified subtypes (CA-125/CA19-9/carcinoembryonic antigen) in cervical adenocarcinoma. Int J Biol Markers 2023, vol. 38(no. 3–4), 223–232. [CrossRef]
- M. Varadi et al., AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 2022, vol. 50(no. D1), D439–D444. [CrossRef]
- Boiko, D. A.; MacKnight, R.; Kline, B.; Gomes, G. Autonomous chemical research with large language models. Nature 2023, vol. 624(no. 7992), 570–578. [Google Scholar] [CrossRef]
- Wójcikowski, M.; Zielenkiewicz, P.; Siedlecki, P. Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field. J Cheminform 2015, vol. 7(no. 1), 26. [Google Scholar] [CrossRef]
- Sanchez-Lengeling, B.; Outeiral, C.; Guimaraes, G. L.; Aspuru-Guzik, A. Optimizing distributions over molecular space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry (ORGANIC). In ChemRxiv; 17 Aug 2017. [Google Scholar] [CrossRef]
- Jin, W.; Barzilay, R.; Jaakkola, T. Junction Tree Variational Autoencoder for Molecular Graph Generation. In in Proceedings of the 35th International Conference on Machine Learning, PMLR, July 2018; pp. 2323–2332. Available online: https://proceedings.mlr.press/v80/jin18a.html.
- Maryasin, B.; Marquetand, P.; Maulide, N. Machine Learning for Organic Synthesis: Are Robots Replacing Chemists? Angewandte Chemie International Edition 2018, vol. 57(no. 24), 6978–6980. [Google Scholar] [CrossRef] [PubMed]
- Altae-Tran, H.; Ramsundar, B.; Pappu, A. S.; Pande, V. Low Data Drug Discovery with One-Shot Learning. ACS Cent. Sci. 2017, vol. 3(no. 4), 283–293. [Google Scholar] [CrossRef]
- Coley, C. W.; Barzilay, R.; Green, W. H.; Jaakkola, T. S.; Jensen, K. F. Convolutional Embedding of Attributed Molecular Graphs for Physical Property Prediction. J. Chem. Inf. Model. 2017, vol. 57(no. 8), 1757–1772. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, J.; Liaw, A.; Sheridan, R. P.; Svetnik, V. Demystifying Multitask Deep Neural Networks for Quantitative Structure–Activity Relationships. J. Chem. Inf. Model. 2017, vol. 57(no. 10), 2490–2504. [Google Scholar] [CrossRef] [PubMed]
- D. K. Duvenaud et al., “Convolutional Networks on Graphs for Learning Molecular Fingerprints,” in Advances in Neural Information Processing Systems. Curran Associates, Inc., 2015. 23 Oct 2025. Available online: https://proceedings.neurips.cc/paper_files/paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html.
- Urban, G.; Subrahmanya, N.; Baldi, P. Inner and Outer Recursive Neural Networks for Chemoinformatics Applications. J. Chem. Inf. Model. 2018, vol. 58(no. 2), 207–211. [Google Scholar] [CrossRef] [PubMed]
- E. N. Feinberg et al., PotentialNet for Molecular Property Prediction. ACS Cent. Sci. 2018, vol. 4(no. 11), 1520–1530. [CrossRef]
- Durrant, J. D.; McCammon, J. A. NNScore: A Neural-Network-Based Scoring Function for the Characterization of Protein−Ligand Complexes. J. Chem. Inf. Model. 2010, vol. 50(no. 10), 1865–1871. [Google Scholar] [CrossRef]
- Awale, M.; Reymond, J.-L. Polypharmacology Browser PPB2: Target Prediction Combining Nearest Neighbors with Machine Learning. J. Chem. Inf. Model. 2019, vol. 59(no. 1), 10–17. [Google Scholar] [CrossRef]
- C. W. Coley, L. Rogers, W. H. Green, and K. F. Jensen, SCScore: Synthetic Complexity Learned from a Reaction Corpus. J. Chem. Inf. Model. 2018, vol. 58(no. 2), 252–261. [CrossRef]
- Pereira, J. C.; Caffarena, E. R.; dos Santos, C. N. Boosting Docking-Based Virtual Screening with Deep Learning. J. Chem. Inf. Model. 2016, vol. 56(no. 12), 2495–2506. [Google Scholar] [CrossRef]
- Stork, C.; Chen, Y.; Šícho, M.; Kirchmair, J. Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters. J. Chem. Inf. Model. 2019, vol. 59(no. 3), 1030–1043. [Google Scholar] [CrossRef]
- Yasuo, N.; Sekijima, M. Improved Method of Structure-Based Virtual Screening via Interaction-Energy-Based Learning. J. Chem. Inf. Model. 2019, vol. 59(no. 3), 1050–1061. [Google Scholar] [CrossRef]
- Cho, A. No room for error. Science 2020, vol. 369(no. 6500), 130–133. [Google Scholar] [CrossRef] [PubMed]
- Gromski, P. S.; Granda, J. M.; Cronin, L. Universal Chemical Synthesis and Discovery with ‘The Chemputer. Trends in Chemistry 2020, vol. 2(no. 1), 4–12. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Wang, S.; Tang, X. EQUIBIND: A geometric deep learning-based protein-ligand binding prediction method. Drug Discov Ther 2023, vol. 17(no. 5), 363–364. [Google Scholar] [CrossRef] [PubMed]
- Corso, G.; Stärk, H.; Jing, B.; Barzilay, R.; Jaakkola, T. DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking. arXiv:2210.01776. 2023. [Google Scholar] [CrossRef]
- A. T. McNutt et al., GNINA 1.0: molecular docking with deep learning. J Cheminform 2021, vol. 13(no. 1), 43. [CrossRef]
- S. D. Dimitrov et al., QSAR Toolbox – workflow and major functionalities. SAR and QSAR in Environmental Research 2016, vol. 27(no. 3), 203–219. [CrossRef]
- P. Jing et al., Quantitative studies on structure–ORAC relationships of anthocyanins from eggplant and radish using 3D-QSAR. Food Chemistry 2014, vol. 145, 365–371. [CrossRef]
- Tosco, P.; Balle, T. Open3DQSAR: a new open-source software aimed at high-throughput chemometric analysis of molecular interaction fields. J Mol Model 2011, vol. 17(no. 1), 201–208. [Google Scholar] [CrossRef] [PubMed]
- Ambure, P.; Halder, A. K.; González Díaz, H.; Cordeiro, M. N. D. S. QSAR-Co: An Open Source Software for Developing Robust Multitasking or Multitarget Classification-Based QSAR Models. J. Chem. Inf. Model. 2019, vol. 59(no. 6), 2538–2544. [Google Scholar] [CrossRef]
- Vainio, M. J.; Johnson, M. S. McQSAR: A Multiconformational Quantitative Structure−Activity Relationship Engine Driven by Genetic Algorithms. J. Chem. Inf. Model. 2005, vol. 45(no. 6), 1953–1961. [Google Scholar] [CrossRef] [PubMed]
- Nashwan, M. J.; Hani, S. B. Transforming cancer clinical trials: The integral role of artificial intelligence in electronic health records for efficient patient recruitment. Contemporary Clinical Trials Communications 2023, vol. 36, 101223. [Google Scholar] [CrossRef] [PubMed]
- A. Farnoud, A. J. Ohnmacht, M. Meinel, and M. P. Menden, Can artificial intelligence accelerate preclinical drug discovery and precision medicine? Expert Opinion on Drug Discovery 2022, vol. 17(no. 7), 661–665. [CrossRef]
- Wieder, R.; Adam, N. Drug repositioning for cancer in the era of AI, big omics, and real-world data. Critical Reviews in Oncology/Hematology 2022, vol. 175, 103730. [Google Scholar] [CrossRef]
- Chen, Z.; Min, M. R.; Parthasarathy, S.; Ning, X. A deep generative model for molecule optimization via one fragment modification. Nat Mach Intell 2021, vol. 3(no. 12), 1040–1049. [Google Scholar] [CrossRef]
- Pandiyan, S.; Wang, L. A comprehensive review on recent approaches for cancer drug discovery associated with artificial intelligence. Computers in Biology and Medicine 2022, vol. 150, 106140. [Google Scholar] [CrossRef]
- Zhang, B.; Shi, H.; Wang, H. Machine Learning and AI in Cancer Prognosis, Prediction, and Treatment Selection: A Critical Approach. JMDH 2023, vol. 16, 1779–1791. [Google Scholar] [CrossRef]
- K. Senthil Kumar et al., Artificial Intelligence in Clinical Oncology: From Data to Digital Pathology and Treatment. Am Soc Clin Oncol Educ Book 2023, no. 43, e390084. [CrossRef]
- Fountzilas, E.; Pearce, T.; Baysal, M. A.; Chakraborty, A.; Tsimberidou, A. M. Convergence of evolving artificial intelligence and machine learning techniques in precision oncology. NPJ Digit Med 2025, vol. 8(no. 1), 75. [Google Scholar] [CrossRef]
- A. Blanco-González et al., The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies. Pharmaceuticals (Basel) 2023, vol. 16(no. 6), 891. [CrossRef]
- Cheong, B. C. Transparency and accountability in AI systems: safeguarding wellbeing in the age of algorithmic decision-making. Front. Hum. Dyn. 2024, vol. 6. [Google Scholar] [CrossRef]
- Kiseleva, A.; Kotzinos, D.; De Hert, P. Transparency of AI in Healthcare as a Multilayered System of Accountabilities: Between Legal Requirements and Technical Limitations. Front Artif Intell 2022, vol. 5, 879603. [Google Scholar] [CrossRef]
- Y. K. Dwivedi et al., Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management 2021, vol. 57, 101994. [CrossRef]
- Boudi, A. L.; Boudi, M.; Chan, C.; Boudi, F. B. Ethical Challenges of Artificial Intelligence in Medicine. Cureus 2024, vol. 16(no. 11), e74495. [Google Scholar] [CrossRef] [PubMed]
- Hasan, H. E.; Jaber, D.; Khabour, O. F.; Alzoubi, K. H. Ethical considerations and concerns in the implementation of AI in pharmacy practice: a cross-sectional study. BMC Med Ethics 2024, vol. 25(no. 1), 55. [Google Scholar] [CrossRef] [PubMed]
- M. Marouf et al., Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks. Nat Commun 2020, vol. 11(no. 1), 166. [CrossRef] [PubMed]
- Holmes, I.; Linder, J.; Kelley, D. Selective State Space Models Outperform Transformers at Predicting RNA-Seq Read Coverage. bioRxiv 2025, p. 2025.02.13.638190. [Google Scholar] [CrossRef]
- Toni, E.; Ayatollahi, H.; Abbaszadeh, R.; Siahpirani, A. Fotuhi. Machine Learning Techniques for Predicting Drug-Related Side Effects: A Scoping Review. Pharmaceuticals (Basel) 2024, vol. 17(no. 6), 795. [Google Scholar] [CrossRef] [PubMed]
- AlGhamdi, R.; Alassafi, M. O.; Alshdadi, A. A.; Dessouky, M. M.; Ramdan, R. A.; Aboshosha, B. W. Developing Trusted IoT Healthcare Information-Based AI and Blockchain. Processes 2023, vol. 11(no. 1), 34. [Google Scholar] [CrossRef]
- Ivanisevic, T.; Sewduth, R. N. Multi-Omics Integration for the Design of Novel Therapies and the Identification of Novel Biomarkers. Proteomes 2023, vol. 11(no. 4), 34. [Google Scholar] [CrossRef]
- Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. Multi-omics Data Integration, Interpretation, and Its Application. Bioinform Biol Insights 2020, vol. 14, 1177932219899051. [Google Scholar] [CrossRef] [PubMed]
- Mirakhori, F.; Niazi, S. K. Harnessing the AI/ML in Drug and Biological Products Discovery and Development: The Regulatory Perspective. Pharmaceuticals (Basel) 2025, vol. 18(no. 1), 47. [Google Scholar] [CrossRef]
- Zaidan, A. M. The leading global health challenges in the artificial intelligence era. Front Public Health 2023, vol. 11, 1328918. [Google Scholar] [CrossRef] [PubMed]

| Tool Name | Category | Key Feature(s) | Algorithm(s)/Architecture | Ref. |
|---|---|---|---|---|
| AlphaFold | Protein Structure Prediction | Predicts 3D protein structures with high accuracy. | Deep Neural Networks (DNN) | [42] |
| Coscientist | Chemical Reaction Planning | Autonomously plans and executes chemical experiments using literature search. | Large Language Models (LLM), Deep Neural Networks (DNN) | [43] |
| ODDT | Molecular Modeling | A comprehensive toolkit for molecular modeling and chemoinformatics. | Random Forest (RF), Neural Network Score (NNScore) | [44] |
| REINVENT | Molecular Generation | Designs nov[40,41]el molecules from scratch. | Recurrent Neural Networks (RNN), Reinforcement Learning | [31] |
| ORGANIC | Molecular Generation | Generates molecules with desired properties. | Machine Learning (ML) | [45] |
| JunctionTree VAE | Molecular Generation | Creates new, valid molecular structures. | Variational Autoencoder (VAE) | [46] |
| Chemical VAE | Molecular Generation | Generates new chemical compounds automatically. | Variational Autoencoder (VAE) | [47] |
| DeepChem | Molecular Property Prediction | A Python library for various drug discovery predictions. | Deep Learning (DL) | [48] |
| Conv_qsar_fast | Molecular Property Prediction | Predicts molecular properties from structural data. | Convolutional Neural Network (CNN) | [49] |
| DeepNeuralNetQSAR | Molecular Property Prediction | Forecasts molecular activity levels. | Deep Neural Networks (DNN) | [50] |
| Neural Graph Fingerprints | Molecular Property Prediction | Predicts properties of new molecules using their graph structure. | Convolutional Neural Network (CNN) | [51] |
| InnerOuterRNN | Molecular Property Prediction | Estimates chemical, physical, and biological properties. | Recurrent Neural Networks (RNN) | [52] |
| DeepTox | Molecular Property Prediction | Assesses the toxicity of chemical compounds. | Deep Learning (DL) | [39] |
| PotentialNet | Molecular Property Prediction | Estimates ligand-binding affinity. | Graph Convolutional Neural Network (CNN) | [53] |
| NNScore | Molecular Property Prediction | Scores protein-ligand binding affinity. | Neural Network | [54] |
| PPB2 | Molecular Property Prediction | Predicts poly-pharmacology (interaction with multiple targets). | Machine Learning (ML), Nearest Neighbor | [55] |
| SCScore | Molecular Property Prediction | Rates the synthetic complexity of a molecule. | Neural Network | [56] |
| DeltaVina | Drug Discovery | Improves the prediction of binding affinity. | Random Forest (RF), AutoDock Scoring | [57] |
| Hit Dexter | Drug Discovery | Identifies compounds that may interfere with biochemical assays. | Machine Learning (ML) | [58] |
| SIEVE-Score | Drug Discovery | An advanced scoring function for structure-based virtual screening. | Interaction-Energy-Based Learning | [59] |
| QML | Quantum Machine Learning | A Python toolkit for molecular modeling using quantum algorithms. | Machine Learning (ML) | [60] |
| Chemputer | Chemical Synthesis | A system for automating and documenting chemical synthesis procedures. | Chemical Programming Language (Not standard AI) | [61] |
| EquiBind | Molecular docking and virtual screening | Performs direct, "blind" prediction of ligand binding poses without the need for a traditional search procedure. | A deep learning model | [62] |
| DiffDock | .Molecular docking and virtual screening | Molecular docking that provides confidence estimates for its predicted ligand poses | A diffusion-based generative model | [63] |
| GNINA | Molecular docking and virtual screening | Pose prediction and scoring, offering high accuracy in structure-based virtual screening. | Convolutional neural networks (CNNs) | [64] |
| QSAR ToolBox | QSAR | An integrated platform for chemical grouping, read-across, and structural similarity analysis by combining experimental data and computational inference. | Traditional Machine Learning | [65] |
| SYBYL-X | QSAR | A comprehensive molecular modeling suite supporting structure-based drug design, lead optimization, and molecular docking. | Classical Machine Learning | [66] |
| Open3DQSAR | QSAR | Used to develop 3D-QSAR models via alignment, field-based descriptors, and regression optimization. | Classical Machine Learning | [67] |
| QSAR-Co | QSAR | Builds multi-target QSAR classification and regression models with multiple descriptor types. | Supervised Machine Learning | [68] |
| McQSAR | QSAR | Automated generation and optimization of QSAR models using evolutionary algorithms. | Machine Learning Optimisation Algorithm | [69] |
| PkCSM | Pharmacokinetics & Toxicity Prediction | Predicts key ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties using graph-based signatures as molecular descriptors. | Based on distance-based graph kernels and supervised learning. | [37] |
| AdmetSAR | Pharmacokinetics & Toxicity Prediction | A comprehensive source and prediction tool for chemical ADMET properties, featuring a large, curated database. | Various machine learning models (e.g., Random Forest, SVM). | [38] |
| DeepTox | Toxicity Prediction | Predicts the toxicity of chemical compounds by identifying toxicophores using deep learning. | Deep Learning (DL) | [39] |
| PandaOmics | Biomarker & Target Discovery | An AI-driven platform for analyzing multi-omics data to identify novel disease biomarkers and therapeutic targets. | Machine Learning (ML), including natural language processing for text mining. | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
