Submitted:
26 January 2026
Posted:
28 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Agentic AI for Spatio-Temporal Data
2.1. Data Modalities
2.1.1. 3.1.1 Textual Data
2.1.2. 3.1.2 Structured Tabular and Metadata
2.1.3. 3.1.3 Vector Geospatial Data
2.1.4. 3.1.4 Raster and Image Data
2.1.5. 3.1.5 Time-Series Signals
2.1.6. 3.1.6 Map-Centeric Multimodal Perception
2.2. Agentic Capabilities
| Agentic Capability | Description | Representative Systems |
|---|---|---|
| Planning & Reasoning | Decomposes complex spatial or temporal objectives into ordered sub-tasks, enabling multi-step analysis, navigation, optimization, and workflow execution. | GeoAgent [16], ThinkGeo [10], MapAgent [24], GeoFlow [13], AgentAD [15], PReP [29] |
| Knowledge Retrieval | Grounds agent decisions in external, domain-specific sources such as geospatial codebases, spatial databases, planning documents, or model metadata to reduce hallucination and enforce spatial and semantic constraints. | GeoAgent [16], GeoCogent [17], GeoColab [18], GeoQA [20], PlanGPT [19], REMSA [21], GeoEvolve [31] |
| Memory & State Tracking | Maintains continuity across multi-step workflows or long-horizon tasks by tracking intermediate results, execution states, user interactions, or historical context. | GeoColab [18], ShapefileGPT [22], GeoFlow [13], GeoQA [20], LLMob [28], PReP [29] |
| Tool Use | Enables agents to invoke external systems such as GIS libraries, SQL engines, vision models, map services, or optimization solvers to act on real-world spatio-temporal data. | GeoAgent [16], RS-Agent [11], ThinkGeo [10], GeoLLM-Engine [25], MapBot [30], VICoT-Agent [26], ST-text-to-sql[6] |
2.2.1. 3.2.1 Planning & Reasoning
2.2.2. 3.2.2 Knowledge Retrieval
2.2.3. 3.2.3 Memory & State Tracking
2.2.4. 3.2.4 Tool Use
2.3. Application Landscape
2.3.1. 3.3.1 Geospatial Reasoning and Question Answering(QA)
2.3.2. 3.3.2 Programmatic GIS and Code Automation
2.3.3. 3.3.3 Remote Sensing(RS) and Earth Observation(EO)
2.3.4. 3.3.4 Planning, Optimization, and Decision Support
2.3.5. 3.3.5 Human-Centric Mobility and Urban Interaction
3. Future Directions & Opportunities
3.0.1. Explainability and Transparent Reasoning
3.0.2. Generalization of Spatial Foundation Models
References
- Chang, Y.; Wang, X.; Wang, J.; Wu, Y.; Yang, L.; Zhu, K.; Chen, H.; Yi, X.; Wang, C.; Wang, Y.; et al. A survey on evaluation of large language models. ACM transactions on intelligent systems and technology 2024, 15, 1–45. [Google Scholar] [CrossRef]
- Acharya, D.B.; Kuppan, K.; Divya, B. Agentic ai: Autonomous intelligence for complex goals–a comprehensive survey. IEEe Access, 2025. [Google Scholar]
- Gridach, M.; Nanavati, J.; Abidine, K.Z.E.; Mendes, L.; Mack, C. Agentic ai for scientific discovery: A survey of progress, challenges, and future directions. arXiv preprint 2025, arXiv:2503.08979. [Google Scholar] [CrossRef]
- Sapkota, R.; Roumeliotis, K.I.; Karkee, M. Ai agents vs. agentic ai: A conceptual taxonomy, applications and challenges. arXiv preprint 2025, arXiv:2505.10468. [Google Scholar] [CrossRef]
- Wang, S.; Cao, J.; Philip, S.Y. Deep learning for spatio-temporal data mining: A survey. IEEE transactions on knowledge and data engineering 2020, 34, 3681–3700. [Google Scholar] [CrossRef]
- Redd, M.; Zhe, T.; Wang, D. From Queries to Insights: Agentic LLM Pipelines for Spatio-Temporal Text-to-SQL. In Proceedings of the Proceedings of the 1st ACM SIGSPATIAL International Workshop on Generative and Agentic AI for Multi-Modality Space-Time Intelligence, 2025; pp. 6–14. [Google Scholar]
- Hu, J.; Sun, L.; Liu, X. GeoAgent: An Agentic AI Framework for Spatial Query Understanding and Interactive Geospatial Intelligence. In Proceedings of the Proceedings of the 1st ACM SIGSPATIAL International Workshop on Generative and Agentic AI for Multi-Modality Space-Time Intelligence, 2025; pp. 54–60. [Google Scholar]
- Krechetova, V.; Kochedykov, D. GeoBenchX: Benchmarking LLMs in Agent Solving Multistep Geospatial Tasks. In Proceedings of the Proceedings of the 1st ACM SIGSPATIAL International Workshop on Generative and Agentic AI for Multi-Modality Space-Time Intelligence, 2025; pp. 27–35. [Google Scholar]
- Lee, C.; Paramanayakam, V.; Karatzas, A.; Jian, Y.; Fore, M.; Liao, H.; Yu, F.; Li, R.; Anagnostopoulos, I.; Stamoulis, D. Multi-Agent Geospatial Copilots for Remote Sensing Workflows. arXiv preprint 2025, arXiv:2501.16254. [Google Scholar] [CrossRef]
- Shabbir, A.; Munir, M.A.; Dudhane, A.; Sheikh, M.U.; Khan, M.H.; Fraccaro, P.; Moreno, J.B.; Khan, F.S.; Khan, S. ThinkGeo: Evaluating Tool-Augmented Agents for Remote Sensing Tasks. arXiv preprint 2025, arXiv:2505.23752. [Google Scholar]
- Xu, W.; Yu, Z.; Mu, B.; Wei, Z.; Zhang, Y.; Li, G.; Peng, M. RS-Agent: Automating Remote Sensing Tasks through Intelligent Agent. arXiv preprint 2024. arXiv:2406.07089. [CrossRef]
- Singh, S.; Fore, M.; Stamoulis, D. Evaluating tool-augmented agents in remote sensing platforms. arXiv preprint 2024. arXiv:2405.00709. [CrossRef]
- Bhattaram, A.; Chung, J.; Chung, S.; Gupta, R.; Ramamoorthy, J.; Gullapalli, K.; Marculescu, D.; Stamoulis, D. GeoFlow: Agentic Workflow Automation for Geospatial Tasks. In Proceedings of the Proceedings of the 33rd ACM International Conference on Advances in Geographic Information Systems, 2025; pp. 1150–1153. [Google Scholar]
- Chen, Y.; Wang, W.; Lobry, S.; Kurtz, C. An llm agent for automatic geospatial data analysis. arXiv preprint 2024. arXiv:2410.18792. [CrossRef]
- Chen, J.; Chen, Y.; Pham, D.T.; Song, Y.; Wu, J.; Xing, L.; Chen, Y. A Large Language Model-based Multi-Agent Framework to Autonomously Design Algorithms for Earth Observation Satellite Scheduling Problem. Engineering 2025. [Google Scholar] [CrossRef]
- Huang, C.; Chen, S.; Li, Z.; Qu, J.; Xiao, Y.; Liu, J.; Chen, Z. Geoagent: To empower llms using geospatial tools for address standardization. Proceedings of the Findings of the Association for Computational Linguistics ACL 2024, 2024, 6048–6063. [Google Scholar]
- Hou, S.; Jiao, H.; Liang, J.; Shen, Z.; Zhao, A.; Wu, H. GeoCogent: an LLM-based agent for geospatial code generation. International Journal of Geographical Information Science 2025, 1–34. [Google Scholar] [CrossRef]
- Wu, H.; Jiao, H.; Hou, S.; Liang, J.; Shen, Z.; Zhao, A.; Qing, Y.; Jin, F.; Guan, X.; Gui, Z. GeoColab: an LLM-based multi-agent collaborative framework for geospatial code generation. International Journal of Digital Earth 2025, 18, 2569405. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, G.; Zhang, W. PlanGPT: Enhancing urban planning with a tailored agent framework. In Proceedings of the Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), 2025, pp. 764–783.
- Feng, Y.; Zhang, P.; Xiao, G.; Ding, L.; Meng, L. Towards a Barrier-free GeoQA Portal: Natural Language Interaction with Geospatial Data Using Multi-Agent LLMs and Semantic Search. arXiv preprint arXiv:2503.14251. [CrossRef]
- Chen, B.; Bök, T.E.; Rasti, B.; Markl, V.; Demir, B. REMSA: An LLM Agent for Foundation Model Selection in Remote Sensing. arXiv preprint 2025, arXiv:2511.17442. [Google Scholar] [CrossRef]
- Lin, Q.; Hu, R.; Li, H.; Wu, S.; Li, Y.; Fang, K.; Feng, H.; Du, Z.; Xu, L. ShapefileGPT: A Multi-Agent Large Language Model Framework for Automated Shapefile Processing. arXiv 2024, arXiv:2410.12376. [Google Scholar] [CrossRef]
- Luo, Q.; Lin, Q.; Xu, L.; Wu, S.; Mao, R.; Wang, C.; Feng, H.; Huang, B.; Du, Z. GeoJSON Agents: A Multi-Agent LLM Architecture for Geospatial Analysis-Function Calling vs Code Generation. arXiv preprint 2025, arXiv:2509.08863. [Google Scholar] [CrossRef]
- Hasan, M.H.; Dihan, M.L.; Hashem, T.; Ali, M.E.; Parvez, M.R. MapAgent: A Hierarchical Agent for Geospatial Reasoning with Dynamic Map Tool Integration. arXiv preprint 2025, arXiv:2509.05933. [Google Scholar] [CrossRef]
- Singh, S.; Fore, M.; Stamoulis, D. Geollm-engine: A realistic environment for building geospatial copilots. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024; pp. 585–594. [Google Scholar]
- Wang, C.; Luo, Z.; Liu, R.; Ran, C.; Fan, S.; Chen, X.; He, C. VICoT-Agent: A Vision-Interleaved Chain-of-Thought Framework for Interpretable Multimodal Reasoning and Scalable Remote Sensing Analysis. arXiv preprint 2025, arXiv:2511.20085. [Google Scholar]
- Feng, P.; Lv, Z.; Ye, J.; Wang, X.; Huo, X.; Yu, J.; Xu, W.; Zhang, W.; Bai, L.; He, C.; et al. Earth-agent: Unlocking the full landscape of earth observation with agents. arXiv preprint 2025, arXiv:2509.23141. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, R.; Yang, C.; Wu, Z.; Onizuka, M.; Shibasaki, R.; Koshizuka, N.; Xiao, C. Large language models as urban residents: An llm agent framework for personal mobility generation. Advances in Neural Information Processing Systems 2024, 37, 124547–124574. [Google Scholar]
- Zeng, Q.; Yang, Q.; Dong, S.; Du, H.; Zheng, L.; Xu, F.; Li, Y. Perceive, reflect, and plan: Designing llm agent for goal-directed city navigation without instructions. arXiv preprint 2024. arXiv:2408.04168. [CrossRef]
- Weiss, M.; Rahaman, N.; Pal, C. MapBot: A Multi-Modal Agent for Geospatial Analysis. In Proceedings of the Proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems, 2025; pp. 3059–3061. [Google Scholar]
- Luo, P.; Lou, X.; Zheng, Y.; Zheng, Z.; Ermon, S. GeoEvolve: Automating Geospatial Model Discovery via Multi-Agent Large Language Models. arXiv preprint 2025, arXiv:2509.21593. [Google Scholar]
- Yao, S.; Zhao, J.; Yu, D.; Du, N.; Shafran, I.; Narasimhan, K.R.; Cao, Y. React: Synergizing reasoning and acting in language models. In Proceedings of the The eleventh international conference on learning representations, 2022. [Google Scholar]
- Wu, Q.; Bansal, G.; Zhang, J.; Wu, Y.; Li, B.; Zhu, E.; Jiang, L.; Zhang, X.; Zhang, S.; Liu, J.; et al. Autogen: Enabling next-gen LLM applications via multi-agent conversations. In Proceedings of the First Conference on Language Modeling, 2024. [Google Scholar]
- Pantiukhin, D.; Shapkin, B.; Kuznetsov, I.; Jost, A.A.; Koldunov, N. Accelerating earth science discovery via multi-agent LLM systems. Frontiers in Artificial Intelligence 2025, 8, 1674927. [Google Scholar] [CrossRef] [PubMed]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment anything. In Proceedings of the Proceedings of the IEEE/CVF international conference on computer vision, 2023; pp. 4015–4026. [Google Scholar]
- Oquab, M.; Darcet, T.; Moutakanni, T.; Vo, H.; Szafraniec, M.; Khalidov, V.; Fernandez, P.; Haziza, D.; Massa, F.; El-Nouby, A.; et al. Dinov2: Learning robust visual features without supervision. arXiv preprint 2023, arXiv:2304.07193. [Google Scholar] [CrossRef]
- Kalyuzhnaya, A.; Mityagin, S.; Lutsenko, E.; Getmanov, A.; Aksenkin, Y.; Fatkhiev, K.; Fedorin, K.; Nikitin, N.O.; Chichkova, N.; Vorona, V.; et al. LLM Agents for Smart City Management: Enhancing Decision Support Through Multi-Agent AI Systems. Smart Cities (2624-6511) 2025, 8. [Google Scholar] [CrossRef]
- Hashemi, M.; Zufle, A. From Points to Places: Towards Human Mobility-Driven Spatiotemporal Foundation Models via Understanding Places. arXiv preprint 2025, arXiv:2506.14570. [Google Scholar] [CrossRef]

| Data Modality | Input Type | Representative Usage | Example Studies |
|---|---|---|---|
| Textual Data | Task instructions, analytical queries, urban-planning documents | Geospatial analyst, urban planner | GeoAgent [16], GeoCogent [17], GeoColab [18], PlanGPT [19], GeoQA [20] |
| Structured Tabular & Metadata | Relational tables, optimization parameters, model metadata | Data analyst, decision-support agent | [6], REMSA [21], AgentAD [15], GeoBenchX [8] |
| Vector Geospatial Data | GIS layers, shapefiles, GeoJSON, spatial graphs | GIS operator, spatial analyst | ShapefileGPT [22], GeoJSON [23], GeoAgent [7], MapAgent [24] |
| Raster & Image Data | Optical, SAR, multispectral satellite and aerial imagery | Earth observation analyst | RS-Agent [11], ThinkGeo [10], GeoLLM-Engine [25], VICoT-Agent [26], Earth-agent [27] |
| Time-series Signals | Mobility trajectories, check-ins, navigation histories | Urban resident simulator, navigation agent | LLMob [28], PReP [29] |
| Map-Centric Multimodality | Map images, POIs, routes, APIs, spatial metadata | Navigation assistant, location-based assistant | MapAgent [24], MapBot [30], GeoLLM-Squad [9] |
| Application Category | Agent Role | Representative Systems |
|---|---|---|
| Geospatial Reasoning & Question Answering | Spatial Analyst GIS Query Agent | GeoAgent [7], GeoQA [20], MapAgent [24], Spatio-Temporal NL-to-SQL [6], GeoBenchX [8] |
| Programmatic GIS & Code Automation | GIS Programmer Workflow Executor | GeoAgent [16], GeoCogent [17], GeoColab [18], ShapefileGPT [22], GeoJSON [23] |
| Remote Sensing & Earth Observation | Earth Observation Analyst Vision Reasoning Agent | RS-Agent [11], ThinkGeo [10], GeoLLM-Engine [25], GeoFlow [13], VICoT-Agent [26], Earth-agent [27], GeoLLM-Squad [9] |
| Planning, Optimization & Decision Support | Planning Agent Optimization Assistant | AgentAD [15], GeoEvolve [31], REMSA [21], [37], PlanGPT [19] |
| Human-Centric Mobility & Urban Interaction | Navigation Agent Urban Behavior Simulator | LLMob [28], PReP [29],MapBot [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
