Submitted:
28 January 2026
Posted:
29 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Principle
3. Results and Discussion
3.1. Fabrication
3.2. Results
3.3. Energy estimation
3.4. Discussion
- 1.
- Reducing footprint and energy consumption. Indium Tin Oxide (ITO) is a promising active material that enables high refractive index modulation. Ref. [50] demonstrated a heterogeneously integrated ITO plasmonic MZI modulator on an SOI platform, whose experimental characterization revealed that a phase shift is achievable with a device length on the micrometer scale, alongside an ultra-low of 95 V·µm. Furthermore, Ref. [51] demonstrated the 100 GHz modulation capability of an ITO-based MZI.
- 2.
- Improving noise immunity. Due to the presence of noise, MZI nonlinearity poses challenges for high bit-width operations, particularly near matching conditions where adjacent levels are closely spaced. Previous work [52] demonstrated that optimizing phase shifter lengths and control vectors can eliminate nonlinearity and improve ODAC bit-width, which is applicable to this architecture.
- 3.
- Reducing randomness. For the study reported in this paper, the 5-µm-wide Sb2Se3 cells utilized in experiments are of overly large dimensions. A phase shift close to would be induced by the complete crystallization of the whole cell. As a result, only a small localized area within the cell was subjected to partial crystallization via a single pulse, which introduced non-negligible randomness to the experimental data. The adoption of Sb2Se3 cells with reduced dimensions is anticipated to diminish randomness through full crystallization, while simultaneously facilitating higher-precision phase tuning and enabling support for larger bit-widths.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial intelligence |
| CAM | Content-addressable memory |
| MZI | Mach-Zehnder Interferometer |
| DAC | Digital to analog converter |
| SOI | Silicon-on-Insulator |
| kNN | k Nearest Neighbors |
| SiN | Silicon nitride |
| SOA | Semi-conductor Optical Amplifier |
| PCM | Phase-change material |
| RC | Resistance-capacitance |
| SEM | Scanning electron microscope |
| MMI | Multimode interferometer |
| SNR | Signal-to-noise ratio |
| WPE | Wall-plug efficiency |
| ITO | Indium Tin Oxide |
References
- Zhang, J.; Tang, J.; Ma, C.; Tong, H.; Jing, Y.; Li, J.; Luyten, W.; Moens, M.F. Fast and Flexible Top-k Similarity Search on Large Networks. ACM Trans. Inf. Syst. 2017, 36. [Google Scholar] [CrossRef]
- Rakthanmanon, T.; Campana, B.; Mueen, A.; Batista, G.; Westover, B.; Zhu, Q.; Zakaria, J.; Keogh, E. Addressing Big Data Time Series: Mining Trillions of Time Series Subsequences Under Dynamic Time Warping. ACM Trans. Knowl. Discov. Data 2013, 7. [Google Scholar] [CrossRef]
- Jin, C.; Xu, J.; Zhao, J.; Gu, J.; Chen, J.; Liu, H.; Qian, H.; Zhang, M.; Chen, B.; Cheng, R.; et al. A Multi-Bit CAM Design With Ultra-High Density and Energy Efficiency Based on FeFET NAND. IEEE Electron Device Letters 2023, 44, 1104–1107. [Google Scholar] [CrossRef]
- Xu, W.; Luo, J.; Chen, Z.; Fu, B.; Fu, Z.; Wang, K.; Huang, Q.; Huang, R. A Novel Ferroelectric FET Based Universal Content Addressable Memory With Reconfigurability for Area- and Energy-Efficient In-Memory-Searching System. IEEE Electron Device Letters 2024, 45, 1345–1348. [Google Scholar] [CrossRef]
- Imani, M.; Peroni, D.; Rahimi, A.; Rosing, T.S. Resistive CAM Acceleration for Tunable Approximate Computing. IEEE Transactions on Emerging Topics in Computing 2019, 7, 271–280. [Google Scholar] [CrossRef]
- Mujahid, O.; Ullah, Z. High Speed Partial Pattern Classification System Using a CAM-Based LBP Histogram on FPGA. IEEE Embedded Systems Letters 2020, 12, 87–90. [Google Scholar] [CrossRef]
- Wang, X.; Qu, Y.; Yang, F.; Zhao, L.; Lee, C.; Zhao, Y. A Highly Compact Nonvolatile Ternary Content Addressable Memory (TCAM) With Ultralow Power and 200-ps Search Operation. IEEE Transactions on Electron Devices 2022, 69, 4259–4264. [Google Scholar] [CrossRef]
- Pedretti, G.; Graves, C.E.; Serebryakov, S.; Mao, R.; Sheng, X.; Foltin, M.; Li, C.; Strachan, J.P. Tree-based machine learning performed in-memory with memristive analog CAM. Nature communications 2021, 12, 5806. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, W.; Li, Z.; Lin, N.; Bao, R.; Xu, X.; Dou, C.; Wang, Z.; Shang, D. In-memory search with learning to hash based on resistive memory for recommendation acceleration. npj Unconventional Computing 2024, 1, 10. [Google Scholar] [CrossRef]
- Pedretti, G.; Böhm, F.; Bhattacharya, T.; Heittmann, A.; Zhang, X.; Hizzani, M.; Hutchinson, G.; Kwon, D.; Moon, J.; Valiante, E.; et al. Solving Boolean satisfiability problems with resistive content addressable memories. npj Unconventional Computing 2025, 2, 7. [Google Scholar] [CrossRef]
- Feldmann, J.; Youngblood, N.; Li, X.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. Integrated 256 Cell Photonic Phase-Change Memory With 512-Bit Capacity. IEEE Journal of Selected Topics in Quantum Electronics 2020, 26, 1–7. [Google Scholar] [CrossRef]
- Yang, R.; Li, H.; Smithe, K.K.; Kim, T.R.; Okabe, K.; Pop, E.; Fan, J.A.; Wong, H.S.P. Ternary content-addressable memory with MoS2 transistors for massively parallel data search. Nature Electronics 2019, 2, 108–114. [Google Scholar] [CrossRef]
- Ni, K.; Yin, X.; Laguna, A.F.; Joshi, S.; Dünkel, S.; Trentzsch, M.; Müller, J.; Beyer, S.; Niemier, M.; Hu, X.S.; et al. Ferroelectric ternary content-addressable memory for one-shot learning. Nature Electronics 2019, 2, 521–529. [Google Scholar] [CrossRef]
- Garzón, E.; Golman, R.; Jahshan, Z.; Hanhan, R.; Vinshtok-Melnik, N.; Lanuzza, M.; Teman, A.; Yavits, L. Hamming Distance Tolerant Content-Addressable Memory (HD-CAM) for DNA Classification. IEEE Access 2022, 10, 28080–28093. [Google Scholar] [CrossRef]
- Lee, J.S.; Yoon, J.; Choi, W.Y. In-Memory Nearest Neighbor Search With Nanoelectromechanical Ternary Content-Addressable Memory. IEEE Electron Device Letters 2022, 43, 154–157. [Google Scholar] [CrossRef]
- Garzón, E.; Golman, R.; Lanuzza, M.; Teman, A.; Yavits, L. A Low-Complexity Sensing Scheme for Approximate Matching Content-Addressable Memory. IEEE Transactions on Circuits and Systems II: Express Briefs 2023, 70, 3867–3871. [Google Scholar] [CrossRef]
- Gao, G.; Wen, B.; Yang, N.; Du, Z.; Jiang, M.; Mao, R.; Qiu, R.; Cao, Y.; Xue, H.; Zou, D.; et al. Sb-contacted MoS2 flash memory for analogue in-memory searches. Nature Nanotechnology 2025, 1–9. [Google Scholar] [CrossRef]
- Prucnal, P.R.; Shastri, B.J.; Thomas, F.D.L.; Nahmias, M.A.; Tait, A.N. Recent progress in semiconductor excitable lasers for photonic spike processing. Advances in Optics & Photonics 2016, 8, 228. [Google Scholar]
- Cheng, J.; Zhou, H.; Dong, J. Photonic matrix computing: from fundamentals to applications. nanomaterials 2021, 11, 1683. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.Y.; Zhou, L.; Zhu, X.; Zhou, Y.; Han, S.T. Photonic Memristor for Future Computing: A Perspective. Advanced Optical Materials 2019, 7, 1900766. Available online: https://advanced.onlinelibrary.wiley.com/doi/pdf/10.1002/adom.201900766. [CrossRef]
- Shastri, B.J.; Tait, A.N.; Ferreira de Lima, T.; Pernice, W.H.; Bhaskaran, H.; Wright, C.D.; Prucnal, P.R. Photonics for artificial intelligence and neuromorphic computing. Nature Photonics 2021, 15, 102–114. [Google Scholar] [CrossRef]
- Christos, V.; Pavlos, M.; Stelios, P.; Amalia, M.; Nikos, P. Integrated Optical Content Addressable Memories (CAM) and Optical Random Access Memories (RAM) for Ultra-Fast Address Look-Up Operations. Applied Sciences 2017, 7, 700. [Google Scholar]
- Mourgias-Alexandris, G.; Vagionas, C.; Tsakyridis, A.; Maniotis, P.; Pleros, N. Optical Content Addressable Memory Matchline for 2-bit Address Look-Up at 10 Gb/s. IEEE Photonics Technology Letters 2018, 30, 809–812. [Google Scholar] [CrossRef]
- Moschos, T.; Simos, S.; Vagionas, C.; Alexoudi, T.; Pleros, N. An All-Optical Address Look-Up Table Using Optical CAM and Optical RAM Banks. Journal of Lightwave Technology 2022, 40, 7826–7834. [Google Scholar] [CrossRef]
- Alkabani, Y.; Miscuglio, M.; Sorger, V.J.; El-Ghazawi, T. OE-CAM: A Hybrid Opto-Electronic Content Addressable Memory. IEEE Photonics Journal 2020, 12, 1–14. [Google Scholar] [CrossRef]
- London, Y.; Van Vaerenbergh, T.; Ramini, L.; Descos, A.; Buonanno, L.; Youn, J.; Li, C.; Graves, C.E.; Fiorentino, M.; Beausoleil, R.G. Multiplexing in photonics as a resource for optical ternary content-addressable memory functionality. Nanophotonics 2023, 12, 4137–4155. [Google Scholar] [CrossRef]
- Kaiser, M.A.A.; Singh, A.; Snyder, S.; Poursiami, H.; Parsa, M.; Jaiswal, A. OptiCAM: An optical content-addressable memory architecture for ultra-fast pattern matching. APL Photonics 2025, 10. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, L.; Xu, J.; Lu, L.; Chen, J.; Rahman, B. All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material. Optics letters 2018, 43, 5539–5542. [Google Scholar] [CrossRef] [PubMed]
- Ríos, C.; Youngblood, N.; Cheng, Z.; Le Gallo, M.; Pernice, W.H.; Wright, C.D.; Sebastian, A.; Bhaskaran, H. In-memory computing on a photonic platform. Science advances 2019, 5, eaau5759. [Google Scholar] [CrossRef] [PubMed]
- Brückerhoff-Plückelmann, F.; Bente, I.; Becker, M.; Vollmar, N.; Farmakidis, N.; Lomonte, E.; Lenzini, F.; Wright, C.D.; Bhaskaran, H.; Salinga, M.; et al. Event-driven adaptive optical neural network. Science Advances 2023, 9, eadi9127. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Brückerhoff-Plückelmann, F.; Meyer, L.; Dijkstra, J.; Bente, I.; Wendland, D.; Varri, A.; Aggarwal, S.; Farmakidis, N.; Wang, M.; et al. Partial coherence enhances parallelized photonic computing. Nature 2024, 632, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Quashef, M.A.Z.; Alam, M.K. Ultracompact photonic integrated content addressable memory using phase change materials. Optical and Quantum Electronics 2022, 54, 1–19. [Google Scholar] [CrossRef]
- Cheng, S.; Li, X.; Li, Y.; Feng, Y.; Jin, W.; Zhang, Y.; Liu, Z.; Qin, Y.; Yang, X.; Yuan, L. All-Optical Content-Addressable Memory (CAM) Based on All-Fiber Platform. ACS Photonics, 2025. [Google Scholar]
- Gamache, B.; Pfeffer, Z.; Khatri, S. A fast ternary CAM design for IP networking applications. In Proceedings of the Proceedings. 12th International Conference on Computer Communications and Networks (IEEE Cat. No.03EX712), 2003; pp. 434–439. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, B.; Ye, F.; Si, M.; Chu, C.H.; Tian, J.; Yin, C.; Deng, S.; Hao, Y.; Balaji, P.; et al. Accelerating Communication in Deep Learning Recommendation Model Training with Dual-Level Adaptive Lossy Compression. In Proceedings of the SC24: International Conference for High Performance Computing, Networking, Storage and Analysis, 2024; pp. 1–16. [Google Scholar] [CrossRef]
- Delaney, M.; Zeimpekis, I.; Du, H.; Yan, X.; Banakar, M.; Thomson, D.J.; Hewak, D.W.; Muskens, O.L. Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material. Science Advances 2021, 7, eabg3500. [Google Scholar] [CrossRef]
- Shang, K.; Niu, L.; Jin, H.; Wang, H.; Zhang, W.; Gan, F.; Xu, P. Non-volatile 2× 2 optical switch using multimode interference in an Sb2Se3-loaded waveguide. Optics Letters 2024, 49, 722–725. [Google Scholar] [CrossRef]
- Ríos, C.; Du, Q.; Zhang, Y.; Popescu, C.C.; Shalaginov, M.Y.; Miller, P.; Roberts, C.; Kang, M.; Richardson, K.A.; Gu, T.; et al. Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials. PhotoniX 2022, 3, 26. [Google Scholar] [CrossRef]
- Jin, H.; Niu, L.; Zheng, J.; Xu, P.; Majumdar, A. Compact nonvolatile polarization switch using an asymmetric Sb2Se3-loaded silicon waveguide. Optics Express 2023, 31, 10684–10693. [Google Scholar] [CrossRef]
- Li, H.; Zeng, D.; Huang, Y.; Huang, Q.; Zhang, X. Ultra-compact, ultra-low-loss and broadband 2× 2 nonvolatile optical switch based on Sb2Se3 phase change material. Optics Express 2024, 32, 35287–35297. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Lin, X.; Xu, K.; Wu, Y.; Wang, C.; Wang, Z.; Lei, K.; Bao, K.; Li, J.; Li, L.; et al. Inverse design of compact nonvolatile reconfigurable silicon photonic devices with phase-change materials. Nanophotonics 2024, 13, 2183–2192. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Guo, Y.; Zhang, L.; Hu, X.; Xu, Y.; Bao, H. On-chip nonvolatile and erasable silicon waveguide filter based on a low-loss phase-change material. Optics Express 2025, 33, 26713–26726. [Google Scholar] [CrossRef]
- Papuchon, M.; Puech, C.; Schnapper, A. 4-bits digitally driven integrated amplitude modulator for data processing. Electronics Letters 1980, 16, 142–144. [Google Scholar] [CrossRef]
- Patel, D.; Samani, A.; Veerasubramanian, V.; Ghosh, S.; Plant, D.V. Silicon Photonic Segmented Modulator-Based Electro-Optic DAC for 100 Gb/s PAM-4 Generation. IEEE Photonics Technology Letters 2015, 27, 2433–2436. [Google Scholar] [CrossRef]
- Simard, A.; Filion, B.; Patel, D.; Plant, D.; LaRochelle, S. Segmented silicon MZM for PAM-8 transmissions at 114 Gb/s with binary signaling. Optics express 2016, 24, 19467–19472. [Google Scholar] [CrossRef]
- Huang, Z.; Li, C.; Liang, D.; Yu, K.; Santori, C.; Fiorentino, M.; Sorin, W.; Palermo, S.; Beausoleil, R.G. 25 Gbps low-voltage waveguide Si–Ge avalanche photodiode. Optica 2016, 3, 793–798. [Google Scholar] [CrossRef]
- Vaskasi, J.R.; Singh, N.; Van Kerrebrouck, J.; Bauwelinck, J.; Roelkens, G.; Morthier, G. High Wall-plug-efficiency III-V-on-silicon C-band DFB Laser Diodes. In Proceedings of the 2022 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC), 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Dev, S.; Singh, K.; Hosseini, R.; Misra, A.; Catuneanu, M.; Preußler, S.; Schneider, T.; Jamshidi, K. Compact and Energy-Efficient Forward-Biased PN Silicon Mach-Zehnder Modulator. IEEE Photonics Journal 2022, 14, 1–7. [Google Scholar] [CrossRef]
- Cheung, S.; London, Y.; Yuan, Y.; Tossoun, B.; Peng, Y.; Hu, Y.; Vaerenbergh, T.; Liang, D.; Zhang, C.; Kurczveil, G. Heterogeneous III-V/Si micro-ring laser array with multi-state non-volatile memory for ternary content-addressable memories. Nature Communications 2025, 16. [Google Scholar] [CrossRef]
- Amin, R.; Maiti, R.; Gui, Y.; Suer, C.; Miscuglio, M.; Heidari, E.; Khurgin, J.B.; Chen, R.T.; Dalir, H.; Sorger, V.J. Heterogeneously integrated ITO plasmonic Mach–Zehnder interferometric modulator on SOI. Scientific reports 2021, 11, 1287. [Google Scholar] [CrossRef]
- Gui, Y.; Nouri, B.M.; Miscuglio, M.; Amin, R.; Wang, H.; Khurgin, J.B.; Dalir, H.; Sorger, V.J. 100 GHz micrometer-compact broadband monolithic ITO Mach–Zehnder interferometer modulator enabling 3500 times higher packing density. Nanophotonics 2022, 11, 4001–4009. [Google Scholar] [CrossRef]
- Ehrlichman, Y.; Amrani, O.; Ruschin, S. Improved digital-to-analog conversion using multi-electrode Mach–Zehnder interferometer. Journal of Lightwave Technology 2008, 26, 3567–3575. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).