Submitted:
27 January 2026
Posted:
30 January 2026
You are already at the latest version
Abstract
Keywords:
Introduction
Understanding the Relationship Between Electrical Excitation and Mechanical Force.
Effects of Impaired Coronary Circulation on Mechanical Dispersion. Focus on HFpEF.
Microtubules.
Microtubular Hypothesis of Increased Mechanical Dispersion.
Conclusion
Statements and Declarations.
References
- Mechanical Dispersion Discriminates between Arrhythmic and Non-Arrhythmic Sudden Death: From the POST SCD Study. Lionel Tastet, Satvik Ramakrishna, Lisa J. Lim, Dwight Bibby, Jeffrey E. Olgin, Andrew J. Connolly, Ellen Moffatt, Zian H. Tseng, Francesca N. Delling. 4, April 2024, JACC: Clinical Electrophysiology, Vol. 10, pp. 771-773.
- LV mechanical dispersion as a predictor of ventricular arrhythmia in patients with advanced systolic heart failure. . Banasik, G., Segiet, O., Elwart, M. et al. 2016, Herz, Vol. 41, pp. 599–604.
- Sudden cardiac death in heart failure with preserved ejection fraction: an updated review. . Wu, SJ., Hsieh, YC. 2022, Int J Arrhythm, Vols. 23, 7. [CrossRef]
- Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Lang, Roberto M. et al. 1, Journal of the American Society of Echocardiography., Vol. 28.
- Prognostic Relevance and Lower Limit of the Reference Range of Left Ventricular Global Longitudinal Strain: A Clinical Validation Study. . Morris, D, Hung, C, Biering-Sørensen, T. et al. s.l. : 18, 2025 May, J Am Coll Cardiol Img., Vol. 5, pp. 525–536.
- Myocardial Strain Imaging: Theory, Current Practice, and the Future. . Smiseth, O, Rider, O, Cvijic, M. et al. 3, 2025 Mar, J Am Coll Cardiol Img., Vol. 18, pp. 340–381. [CrossRef]
- PROGNOSTIC VALUE OF LEFT VENTRICULAR GLOBAL LONGITUDINAL STRAIN IN PATIENTS WITH HYPERTROPHIC CARDIOMYOPATHY AND LOW-NORMAL LEFT VENTRICULAR EJECTION FRACTION. . Laenens, D, Kamperidis, V, Tjahjadi, C. et al. 2024 Apr,, JACC., Vol. 83 (13_Supplement) 620. [CrossRef]
- Left Ventricular Mechanical Dispersion and Its Value in Combination With Global Longitudinal Strain to Predict Reverse Remodeling in Patients With Heart Failure With Reduced Ejection Fraction. . Liu F, Li R, Liu Y, Ma F, Yang H, Yang Q, Yang X, Yu T, Zeng H, Tang J, Wang H. 2025 Jul 15, J Am Heart Assoc., Vol. 14(14):e040652. . [CrossRef]
- Prediction of Ventricular Arrhythmias With Left Ventricular Mechanical Dispersion: A Systematic Review and Meta-Analysis. . Kawakami H, Nerlekar N, Haugaa KH, Edvardsen T, Marwick TH. (2 Pt 2), 2020 Feb, JACC Cardiovasc Imaging., Vol. 13.
- DIASTOLIC DYSFUNCTION AND MECHANICAL DISPERSION BY SPECKLE TRACKING ECHOCARDIOGRAPHY IN PREDICTING CARDIAC ARREST RISK. Ozbay, B, Saba, S, Villanueva, F. et al. 2024 Apr, JACC., Vol. 83 (13_Supplement) 1443. [CrossRef]
- Mechanical Dispersion Discriminates Between Arrhythmic and Nonarrhythmic Sudden Death: From the POST SCD Study. . Tastet, L, Ramakrishna, S, Lim, L. et al. 4, 2024 Apr, J Am Coll Cardiol EP. , Vol. 10, pp. 771–773.
- Mechanical dispersion in Fabry disease assessed with speckle tracking echocardiography. . Cianciulli TF, Saccheri MC, Rísolo MA, Lax JA, Méndez RJ, Morita LA, Beck MA, Kazelián LR. s.l. : 37, Feb 2020, Echocardiography, Vol. 2, pp. 293-301. [CrossRef]
- Association between ventricular arrhythmias and myocardial mechanical dispersion assessed by strain analysis in patients with nonischemic cardiomyopathy. Kosiuk J, Dinov B, Bollmann A, Koutalas E, Mussigbrodt A, Sommer P, Arya A, Richter S, Hindricks G, Breithardt OA. 12, Dec 2015, lin Res Cardiol., Vol. 104, pp. 1072-7. [CrossRef]
- Left ventricular myocardial deformation pattern, mechanical dispersion, and their relation with electrocardiogram markers in the large population-based STANISLAS cohort: insights into electromechanical coupling. Mario Verdugo-Marchese, Stefano Coiro, Christine Selton-Suty, Masatake Kobayashi, Erwan Bozec, Zohra Lamiral, Clément Venner, Faiez Zannad, Patrick Rossignol, Nicolas Girerd, Olivier Huttin. s.l. : 21, Nov 2020, European Heart Journal - Cardiovascular Imaging., Vol. 11, pp. 1237–1245. [CrossRef]
- Left ventricular repolarization heterogeneity as an arrhythmic substrate in heart failure. . FG., Akar. 2, 2010 Apr, Minerva Cardioangiol., Vol. 58, pp. :205-12.
- Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation. Niwa N, Nerbonne JM. 1, 2010 Jan, J Mol Cell Cardiol. , Vol. 48, pp. 12-25. [CrossRef]
- Distribution of electromechanical delay in the heart: insights from a three-dimensional electromechanical model. . Gurev V, Constantino J, Rice JJ, Trayanova NA. 3, 2010 Aug 4, Biophys J., Vol. 99, pp. 745-54. [CrossRef]
- Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback. . Pfeiffer ER, Tangney JR, Omens JH, McCulloch AD. (2):021007, 2014 Feb, J Biomech Eng., Vol. 136. [CrossRef]
- Mavacamten reduces left ventricular mechanical dispersion in hypertrophic obstructive cardiomyopathy, , . B Ozbay, N Venkatesan, T C Wong, L E Sade. 1, January 2025, jeae333.192, European Heart Journal - Cardiovascular Imaging, Vol. 26. [CrossRef]
- Heart Failure With Preserved Ejection Fraction: JACC Scientific Statement. Borlaug, B, Sharma, K, Shah, S. et al. 18, 2023 May, JACC., Vol. 81, pp. 1810–1834. [CrossRef]
- The epicardial adipose inflammatory triad: coronary atherosclerosis, atrial fibrillation, and heart failure with a preserved ejection fraction. M., Packer. Nov 2018, Eur J Heart Fail. , Vol. 20(11), pp. 1567-1569. [CrossRef]
- Cardiometabolic heart failure with preserved ejection fraction: from molecular signatures to personalized treatment. Gorica, E., Geiger, M.A., Di Venanzio, L. et al. 265, 2025, Cardiovasc Diabetol., Vols. 24,. [CrossRef]
- Microvascular and lymphatic dysfunction in HFpEF and its associated comorbidities. . Cuijpers I, Simmonds SJ, van Bilsen M, Czarnowska E, González Miqueo A, Heymans S, Kuhn AR, Mulder P, Ratajska A, Jones EAV, Brakenhielm E. May 25 2020 , Basic Res Cardiol, Vol. 115(4):39. [CrossRef]
- Chronic Myocardial Ischemia Leads to Loss of Maximal Oxygen Consumption and Complex I Dysfunction. Schipper DA, Palsma R, Marsh KM, O’Hare C, Dicken DS, Lick S, Kazui T, Johnson K, Smolenski RT, Duncker DJ, Khalpey Z. Oct 2017, Ann Thorac Surg, Vol. 104(4), pp. 1298-1304. [CrossRef]
- Metabolic Flexibility of the Heart: The Role of Fatty Acid Metabolism in Health, Heart Failure, and Cardiometabolic Diseases. Actis Dato V, Lange S, Cho Y. Jan 19 2024 , Int J Mol Sci., Vol. 25(2), p. 1211. [CrossRef]
- Epicardial and microvascular angina or atypical chest pain: differential diagnoses with cardiovascular magnetic resonance. Baggiano A, Guglielmo M, Muscogiuri G, Guaricci AI, Del Torto A, Pontone G. Jun 2020, Eur Heart J Suppl., Vol. 22(Suppl E), pp. E116-E120. [CrossRef]
- The microtubule cytoskeleton in cardiac mechanics and heart failure. . Caporizzo, M.A., Prosser, B.L. 2022, Nat Rev Cardiol, Vol. 19, pp. 364–378. [CrossRef]
- Impaired Myocardial Energetics Causes Mechanical Dysfunction in Decompensated Failing Hearts. Lopez R, Marzban B, Gao X, Lauinger E, Van den Bergh F, Whitesall SE, Converso-Baran K, Burant CF, Michele DE, Beard DA. 2020, Function (Oxf)., Vol. 1(2):zqaa018. [CrossRef]
- Mechanisms of Chronic Metabolic Stress in Arrhythmias. Gowen BH, Reyes MV, Joseph LC, Morrow JP. 2020 Oct 19, Antioxidants (Basel)., Vol. 9(10):1012. [CrossRef]
- Repolarization Reserve and Action Potential Dynamics in Failing Myocytes. Fu JD, Laurita KR. 2018 Feb, Circ Arrhythm Electrophysiol. , Vol. 1(2):e006137. [CrossRef]
- Mitochondrial Dysfunction as Substrate for Arrhythmogenic Cardiomyopathy: A Search for New Disease Mechanisms. van Opbergen CJM, den Braven L, Delmar M, van Veen TAB. Dec 10 2019 , Front Physiol. , Vol. 10:1496. [CrossRef]
- Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. . Kranias EG, Hajjar RJ. s.l. : 110, 2012 Jun 8, Circ Res., Vol. 12, pp. 1646-60.
- The Control of Diastolic Calcium in the Heart: Basic Mechanisms and Functional Implications. Eisner DA, Caldwell JL, Trafford AW, Hutchings DC. 3, 2020 Jan 31, Circ Res., Vol. 126, pp. 395-412. [CrossRef]
- Physiology of intracellular calcium buffering. ;):. . Eisner D, Neher E, Taschenberger H, Smith G. 4, 2023 Oct 1, Physiol Rev., Vol. 103, pp. 2767-2845. [CrossRef]
- Plasticity of sarcolemmal KATP channel surface expression: relevance during ischemia and ischemic preconditioning. Yang HQ, Foster MN, Jana K, Ho J, Rindler MJ, Coetzee WA. 2016 Jun 1, Am J Physiol Heart Circ Physiol., Vols. 310(11):H1558-66. [CrossRef]
- Early afterdepolarizations and cardiac arrhythmias. Weiss JN, Garfinkel A, Karagueuzian HS, Chen PS, Qu Z. s.l. : 7(12), Dec 2010, Heart Rhythm., pp. 1891-9. [CrossRef]
- Arrhythmogenic consequences of intracellular calcium waves. Xie LH, Weiss JN. Sep 2009 , Am J Physiol Heart Circ Physiol., Vol. 297(3), pp. H997-H1002. [CrossRef]
- Calcium Handling Defects and Cardiac Arrhythmia Syndromes. . Kistamás K, Veress R, Horváth B, Bányász T, Nánási PP, Eisner DA. 72, Feb 25 2020, Front Pharmacol, Vol. 11. [CrossRef]
- Targeting Microtubules for the Treatment of Heart Disease. . Warner EF, Li Y, Li X. 11, 2022 May 27, Circ Res, Vol. 130, pp. 1723-1741. [CrossRef]
- Cardiac microtubules in health and heart disease. Caporizzo MA, Chen CY, Prosser BL. Nov 2019, Exp Biol Med (Maywood), Vol. 244(15), pp. 1255-1272. [CrossRef]
- Quantitative tests reveal that microtubules tune the healthy heart but underlie arrhythmias in pathology. Joca HC, Coleman AK, Ward CW, Williams GSB. Apr 2020 , J Physiol. , Vol. 598(7), pp. 1327-1338. [CrossRef]
- Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes. Miragoli, Michele et al. Issue 1, 2016, Cell Reports, Vol. Volume 14, pp. 140 - 151.
- Microtubule disruption by colchicine reversibly enhances calcium signaling in intact rat cardiac myocytes. Kerfant BG, Vassort G, Gómez AM. Apr 13 2001, Circ Res., Vol. 88(7), pp. E59-65. [CrossRef]
- Cardiomyocyte Microtubules: Control of Mechanics, Transport, and Remodeling. Uchida K, Scarborough EA, Prosser BL. Feb 10 2022, Annu Rev Physiol., Vol. 84, pp. 257-283. [CrossRef]
- Microtubule plus-end tracking proteins: novel modulators of cardiac sodium channels and arrhythmogenesis. Marchal GA, Galjart N, Portero V, Remme CA. 2023 Jul 4, Cardiovasc Res., Vol. 119(7), pp. 1461-1479. [CrossRef]
- Microtubules: From understanding their dynamics to using them as potential therapeutic targets. Y., Ilan. 2019 Jun, J Cell Physiol., Vol. 234(6), pp. 7923-7937. [CrossRef]
- Microtubules: Evolving roles and critical cellular interactions. Logan CM, Menko AS. Nov 2019 , Exp Biol Med (Maywood), Vol. 244(15, pp. 1240-1254. [CrossRef]
- Characterization of microtubule buckling in living cells. . Pallavicini C, Monastra A, Bardeci NG, Wetzler D, Levi V, Bruno L. 6, 2017 Sep, Eur Biophys J., Vol. 46, pp. 581-594. [CrossRef]
- Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. al., Patrick Robison et. 2016, Science, Vols. 352,aaf0659. [CrossRef]
- Microtubules coordinate mitochondria transport with myofibril morphogenesis during muscle development. Avellaneda J, Candeias D, da Rosa Soares A, Gomes ER, Luis NM, Schnorrer F. 2025 Jul 15, Dev Cell., Vols. S1534-5807(25)00411-3. [CrossRef]
- Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. . Chen, C.Y., Caporizzo, M.A., Bedi, K. et al. 2018, Nat Med , Vol. 24, pp. 1225–1233 . [CrossRef]
- Cardiac microtubules in health and heart disease. Caporizzo MA, Chen CY, Prosser BL. 15, 2019 Nov, Exp Biol Med (Maywood)., Vol. 244.
- A microtubule-connexin-43 regulatory link suppresses arrhythmias and cardiac fibrosis in Duchenne muscular dystrophy mice. . Himelman E, Nouet J, Lillo MA, Chong A, Zhou D, Wehrens XHT, Rodney GG, Xie LH, Shirokova N, Contreras JE, Fraidenraich D. 5, 2022 Nov 1, Am J Physiol Heart Circ Physiol. , Vol. 323, pp. H983-H995. . [CrossRef]
- Cardiomyocyte Microtubules: Control of Mechanics, Transport, and Remodeling. . Uchida K, Scarborough EA, Prosser BL. 84, 2022 Feb, Annu Rev Physiol. , Vol. 10, pp. 257-283. [CrossRef]
- Rethinking tubulin acetylation: From regulation to cellular adaptation. . Donker L, Godinho SA. 2025 Jun, Curr Opin Cell Biol., Vol. 94:102512. [CrossRef]
- Consensus Statement Regarding the Efficacy and Safety of Long-Term Low-Dose Colchicine in Gout and Cardiovascular Disease. Robinson, Philip C. et al. 2022 Feb 10, Annu Rev Physiol. , Vol. 84, pp. 257-283. [CrossRef]
- Dysfunction of microtubules induces cardiac dysfunction. . M., Kitakaze. Nov 2018, EBioMedicine, Vols. 37:3-4. [CrossRef]
- The interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases: Implications for therapy. Shi X, Jiang X, Chen C, Zhang Y, Sun X. 2022 Oct, Pharmacol Res. , Vol. 184:106452. [CrossRef]
- Mitochondria are transported along microtubules in membrane nanotubes to rescue distressed cardiomyocytes from apoptosis. Shen, J., Zhang, JH., Xiao, H. et al. 2018, Cell Death Dis, Vols. 9, 81. [CrossRef]
- Ion Channel Impairment and Myofilament Ca2+ Sensitization: Two Parallel Mechanisms Underlying Arrhythmogenesis in Hypertrophic Cardiomyopathy. Santini L, Coppini R, Cerbai E. 2021 Oct 18, Cells., Vol. 10(10):2789. [CrossRef]
- How calcium causes microtubule depolymerization. O’Brien ET, Salmon ED, Erickson HP. 1997, Cell Motil Cytoskeleton., Vol. 36(2), pp. 125-35. [CrossRef]
- Arrhythmogenic Mechanisms in Heart Failure: Linking β-Adrenergic Stimulation, Stretch, and Calcium. Johnson DM, Antoons G. Oct 16 2018 , Front Physiol., p. 9:1453.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
