Submitted:
26 January 2026
Posted:
27 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Experimental Overview
3. Materials and Methods
3.1. Construction of Composite Permeability Fields
| Field | Red pixels | Blue pixels | Green pixels |
|---|---|---|---|
| 1 | 51181 | 1819 | - |
| 2 | 48309 | 4691 | - |
| 3 | 44920 | 8080 | - |
| 4 | 34525 | 18475 | - |
| 2-1 | 48309 | 1819 | 2872 |
| 3-1 | 44920 | 1819 | 6261 |
| 3-2 | 44920 | 4691 | 3389 |
| 4-1 | 34525 | 1819 | 16656 |
| 4-2 | 34525 | 4691 | 13784 |
| 4-3 | 34525 | 8080 | 10395 |
3.2. Flow and Transport Model
3.3. Model Calibration
4. Results
4.1. Dual Composite Permeability Models
4.2. Triple Composite Permeability Models
5. Discussion
6. Conclusions
- 1.
- Two important features must be captured to accurately reproduce non-Fickian solute transport observed after mineral precipitation: a) identify the area of total extension of the precipitation; and b) represent the internal heterogeneous structure conducive to preferential channels.
- 2.
- Dual composite permeability fields, which incorporate the entire area affected by precipitation, effectively capture non-Fickian behavior in the model. This approach provides an excellent fit for both the arrival time and the two peaks characteristic of dual-permeability media. However, the model still faces challenges in fully capturing the transition between the peaks and the maximum value of the first peak. The model suggests that the first peak is due to bypass flow through non-precipitated zones, leading to earlier arrival times. The second peak, on the other hand, reflects the concentration of flow within the low-permeability calcite layer.
- 3.
- The best way to represent the non-Fickian behavior observed after mineral precipitation was achieved by considering triple composite permeability fields, taking into account the total actual area of the precipitate along with defining the high-precipitation area as a small region. In this way, the model reduces the overestimation of the first peak, enhances the transition between peaks, improves the representation of the second peak, and extends the tailing over a longer period.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bachu, S.; Gunter, W.; Perkins, E. Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Conversion and management 1994, 35, 269–279. [Google Scholar] [CrossRef]
- Saripalli, K.P.; Meyer, P.D.; Bacon, D.H.; Freedman, V.L. Changes in hydrologic properties of aquifer media due to chemical reactions: A review. Critical reviews in environmental science and technology 2001, 31, 311–349. [Google Scholar] [CrossRef]
- Li, L.; Benson, C.H.; Lawson, E.M. Impact of mineral fouling on hydraulic behavior of permeable reactive barriers. Groundwater 2005, 43, 582–596. [Google Scholar] [CrossRef]
- Emmanuel, S.; Berkowitz, B. Mixing-induced precipitation and porosity evolution in porous media. Advances in water resources 2005, 28, 337–344. [Google Scholar] [CrossRef]
- Cil, M.B.; Xie, M.; Packman, A.I.; Buscarnera, G. Solute mixing regulates heterogeneity of mineral precipitation in porous media. Geophysical Research Letters 2017, 44, 6658–6666. [Google Scholar] [CrossRef]
- Mackenzie, P.D.; Horney, D.P.; Sivavec, T.M. Mineral precipitation and porosity losses in granular iron columns. Journal of Hazardous Materials 1999, 68, 1–17. [Google Scholar] [CrossRef]
- Zhang, C.; Dehoff, K.; Hess, N.; Oostrom, M.; Wietsma, T.W.; Valocchi, A.J.; Fouke, B.W.; Werth, C.J. Pore-scale study of transverse mixing induced CaCO3 precipitation and permeability reduction in a model subsurface sedimentary system. Environmental science & technology 2010, 44, 7833–7838. [Google Scholar]
- Jeong, H.Y.; Jun, S.C.; Cheon, J.Y.; Park, M. A review on clogging mechanisms and managements in aquifer storage and recovery (ASR) applications. Geosciences Journal 2018, 22, 667–679. [Google Scholar] [CrossRef]
- Fujita, Y.; Ferris, F.G.; Lawson, R.D.; Colwell, F.S.; Smith, R.W. Subscribed content calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiology Journal 2000, 17, 305–318. [Google Scholar] [CrossRef]
- Zhu, T.; Dittrich, M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Frontiers in bioengineering and biotechnology 2016, 4, 4. [Google Scholar] [CrossRef]
- Qin, C.Z.; Hassanizadeh, S.M.; Ebigbo, A. Pore-scale network modeling of microbially induced calcium carbonate precipitation: Insight into scale dependence of biogeochemical reaction rates. Water Resources Research 2016, 52, 8794–8810. [Google Scholar] [CrossRef]
- Warren, L.A.; Maurice, P.A.; Parmar, N.; Ferris, F.G. Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiology Journal 2001, 18, 93–115. [Google Scholar] [CrossRef]
- Wang, Y.; Soga, K.; Dejong, J.T.; Kabla, A.J. A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP). Géotechnique 2019, 69, 1086–1094. [Google Scholar] [CrossRef]
- Castro-Alonso, M.J.; Montañez-Hernandez, L.E.; Sanchez-Muñoz, M.A.; Macias Franco, M.R.; Narayanasamy, R.; Balagurusamy, N. Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts. Frontiers in Materials 2019, 6, 126. [Google Scholar] [CrossRef]
- Starnoni, M.; Sanchez-Vila, X. Pore-scale modelling of subsurface biomineralization for carbon mineral storage. Advances in Water Resources 2024, 185, 104641. [Google Scholar] [CrossRef]
- Neupane, D.; Yasuhara, H.; Kinoshita, N.; Unno, T. Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique. Journal of Geotechnical and Geoenvironmental Engineering 2013, 139, 2201–2211. [Google Scholar] [CrossRef]
- Ahenkorah, I.; Rahman, M.M.; Karim, M.R.; Beecham, S. Enzyme induced calcium carbonate precipitation and its engineering application: A systematic review and meta-analysis. Construction and Building Materials 2021, 308, 125000. [Google Scholar] [CrossRef]
- Zhao, C.; Xiao, Y.; Liu, H.; Chu, J. Effects of urease and cementing solution concentrations on micro-scale enzymatic mineralisation characteristics. Géotechnique 2024, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Sun, X.; Zeng, W.; Xing, H.; Lin, J.; Kang, S.; Yu, L. Application of microbially induced calcium carbonate precipitation (MICP) technique in concrete crack repair: A review. Construction and Building Materials 2024, 411, 134313. [Google Scholar] [CrossRef]
- Konstantinou, C.; Wang, Y. Unlocking the potential of microbially induced calcium carbonate precipitation (MICP) for hydrological applications: a review of opportunities, challenges, and environmental considerations. Hydrology 2023, 10, 178. [Google Scholar] [CrossRef]
- Canal, J.; Delgado, J.; Falcón, I.; Yang, Q.; Juncosa, R.; Barrientos, V. Injection of CO2-saturated water through a siliceous sandstone plug from the Hontomin test site (Spain): experiment and modeling. Environmental science & technology 2013, 47, 159–167. [Google Scholar]
- DePaolo, D.J.; Cole, D.R. Geochemistry of geologic carbon sequestration: an overview. Reviews in Mineralogy and Geochemistry 2013, 77, 1–14. [Google Scholar] [CrossRef]
- Xu, R.; Li, R.; Ma, J.; He, D.; Jiang, P. Effect of mineral dissolution/precipitation and CO2 exsolution on CO2 transport in geological carbon storage. Accounts of chemical research 2017, 50, 2056–2066. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, X.B.; Wang, H.F.; Zeng, R.J. Microbially induced calcium carbonate precipitation driven by ureolysis to enhance oil recovery. RSC advances 2017, 7, 37382–37391. [Google Scholar] [CrossRef]
- Song, C.; Elsworth, D. Microbially induced calcium carbonate plugging for enhanced oil recovery. Geofluids 2020. [Google Scholar] [CrossRef]
- Tariq, Z.; Mahmoud, M.; Alahmari, M.; Bataweel, M.; Mohsen, A. Lost circulation mitigation using modified enzyme induced calcite precipitation technique. Journal of Petroleum Science and Engineering 2022, 210, 110043. [Google Scholar] [CrossRef]
- Jones, T.A.; Detwiler, R.L. Fracture sealing by mineral precipitation: The role of small-scale mineral heterogeneity. Geophysical Research Letters 2016, 43, 7564–7571. [Google Scholar] [CrossRef]
- Yang, F.; Guan, D.; Starchenko, V.; Yuan, K.; Stack, A.G.; Ling, B. Effect of nucleation heterogeneity on mineral precipitation in confined environments. Geophysical Research Letters 2024, 51, e2023GL107185. [Google Scholar] [CrossRef]
- Ortoleva, P.; Merino, E.; Moore, C.; Chadam, J. Geochemical self-organization I; reaction-transport feedbacks and modeling approach. American Journal of science 1987, 287, 979–1007. [Google Scholar] [CrossRef]
- Renard, F.; Gratier, J.P.; Ortoleva, P.; Brosse, E.; Bazin, B. Self-organization during reactive fluid flow in a porous medium. Geophysical Research Letters 1998, 25, 385–388. [Google Scholar] [CrossRef]
- Emmanuel, S.; Ague, J.J.; Walderhaug, O. Interfacial energy effects and the evolution of pore size distributions during quartz precipitation in sandstone. Geochimica et Cosmochimica Acta 2010, 74, 3539–3552. [Google Scholar] [CrossRef]
- Borgia, A.; Pruess, K.; Kneafsey, T.J.; Oldenburg, C.M.; Pan, L. Numerical simulation of salt precipitation in the fractures of a CO2-enhanced geothermal system. Geothermics 2012, 44, 13–22. [Google Scholar] [CrossRef]
- Stack, A.G. Precipitation in pores: A geochemical frontier. Reviews in Mineralogy and Geochemistry 2015, 80, 165–190. [Google Scholar] [CrossRef]
- Noiriel, C.; Seigneur, N.; Le Guern, P.; Lagneau, V. Geometry and mineral heterogeneity controls on precipitation in fractures: An X-ray micro-tomography and reactive transport modeling study. Advances in Water Resources 2021, 152, 103916. [Google Scholar] [CrossRef]
- Jones, T.A.; Detwiler, R.L. Mineral precipitation in fractures: Using the level-set method to quantify the role of mineral heterogeneity on transport properties. Water Resources Research 2019, 55, 4186–4206. [Google Scholar] [CrossRef]
- Detwiler, R.L.; Glass, R.J.; Bourcier, W.L. Experimental observations of fracture dissolution: The role of Peclet number on evolving aperture variability. Geophysical Research Letters 2003, 30. [Google Scholar] [CrossRef]
- De Simoni, M.; Sanchez-Vila, X.; Carrera, J.; Saaltink, M. A mixing ratios-based formulation for multicomponent reactive transport. Water Resources Research 2007, 43. [Google Scholar] [CrossRef]
- Dentz, M.; Le Borgne, T.; Englert, A.; Bijeljic, B. Mixing, spreading and reaction in heterogeneous media: A brief review. Journal of contaminant hydrology 2011, 120, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Rege, S.D.; Fogler, H.S. Competition among flow, dissolution, and precipitation in porous media. AIChE Journal 1989, 35, 1177–1185. [Google Scholar] [CrossRef]
- Steefel, C.I.; Maher, K. Fluid-rock interaction: A reactive transport approach. Reviews in mineralogy and geochemistry 2009, 70, 485–532. [Google Scholar] [CrossRef]
- Jiang, Q.R.; Hu, R.; Deng, H.; Ling, B.; Yang, Z.; Chen, Y.F. Controls of the Nucleation Rate and Advection Rate on Barite Precipitation in Fractured Porous Media. Langmuir 2025. [Google Scholar] [CrossRef]
- Battiato, I.; Tartakovsky, D. Applicability regimes for macroscopic models of reactive transport in porous media. Journal of contaminant hydrology 2011, 120, 18–26. [Google Scholar] [CrossRef]
- Osselin, F.; Kondratiuk, P.; Budek, A.; Cybulski, O.; Garstecki, P.; Szymczak, P. Microfluidic observation of the onset of reactive-infitration instability in an analog fracture. Geophysical Research Letters 2016, 43, 6907–6915. [Google Scholar] [CrossRef]
- Sabo, M.S.; Beckingham, L.E. Porosity-permeability evolution during simultaneous mineral dissolution and precipitation. Water Resources Research 2021, 57, e2020WR029072. [Google Scholar] [CrossRef]
- Masoudi, M.; Nooraiepour, M.; Deng, H.; Hellevang, H. Mineral Precipitation and Geometry Alteration in Porous Structures: How to Upscale Variations in Permeability–Porosity Relationship? Energy & Fuels 2024, 38, 9988–10001. [Google Scholar] [CrossRef]
- Mountassir, G.E.; Lunn, R.J.; Moir, H.; MacLachlan, E. Hydrodynamic coupling in microbially mediated fracture mineralization: Formation of self-organized groundwater flow channels. Water Resources Research 2014, 50, 1–16. [Google Scholar] [CrossRef]
- Li, X.; Yang, X. Effects of physicochemical properties and structural heterogeneity on mineral precipitation and dissolution in saturated porous media. Applied Geochemistry 2022, 146, 105474. [Google Scholar] [CrossRef]
- Guido González-Subiabre, Daniela Reales-Núñez, R.P.I.D.R.N.M.W.S.M.T.; Fernàndez-Garcia, D. Impact of Mixing-Driven Calcite Precipitation on Solute Transport Dynamics: Insights from Laboratory Visualization and Tracer tests Analysis, 2026. Submitted to Water.
- Tartakovsky, A.M.; Redden, G.; Lichtner, P.C.; Scheibe, T.D.; Meakin, P. Mixing-induced precipitation: Experimental study and multiscale numerical analysis. Water Resources Research 2008, 44. [Google Scholar] [CrossRef]
- Katz, G.E.; Berkowitz, B.; Guadagnini, A.; Saaltink, M.W. Experimental and modeling investigation of multicomponent reactive transport in porous media. Journal of contaminant hydrology 2011, 120, 27–44. [Google Scholar] [CrossRef]
- Schuszter, G.; Brau, F.; De Wit, A. Flow-driven control of calcium carbonate precipitation patterns in a confined geometry. Physical Chemistry Chemical Physics 2016, 18, 25592–25600. [Google Scholar] [CrossRef]
- Schuszter, G.; Brau, F.; De Wit, A. Calcium carbonate mineralization in a confined geometry. Environmental Science & Technology Letters 2016, 3, 156–159. [Google Scholar] [CrossRef]
- Schuszter, G.; De Wit, A. Comparison of flow-controlled calcium and barium carbonate precipitation patterns. The Journal of Chemical Physics 2016, 145. [Google Scholar] [CrossRef] [PubMed]
- Perkins, T.K.; Johnston, O. A review of diffusion and dispersion in porous media. Society of Petroleum Engineers Journal 1963, 3, 70–84. [Google Scholar] [CrossRef]
- Bradski, G.; Kaehler, A. Learning OpenCV: Computer vision with the OpenCV library; O’Reilly Media, Inc., 2008. [Google Scholar]
- Howse, J. OpenCV computer vision with python; Packt Publishing Birmingham, UK, 2013; Vol. 27. [Google Scholar]
- Harbaugh, A.W. MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process; US Department of the Interior: US Geological Survey Reston, VA, USA, 2005; Vol. 6. [Google Scholar]
- Pérez-Illanes, R.; Fernàndez-Garcia, D. MODPATH-RW: A Random Walk Particle Tracking Code for Solute Transport in Heterogeneous Aquifers. In Groundwater; 2024. [Google Scholar]
- Pollock, D.W. User guide for MODPATH Version 7—A particle-tracking model for MODFLOW; Technical report; US Geological Survey, 2016. [Google Scholar]
- Levy, M.; Berkowitz, B. Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. Journal of contaminant hydrology 2003, 64, 203–226. [Google Scholar] [CrossRef] [PubMed]







| Symbol | Properties | Values | Units |
|---|---|---|---|
| Pe | Péclet number | 523 | – |
| Q | Total flow rate | m3/s | |
| D | Molecular diffusion (*) | m2/s | |
| d | Glass beads diameter | m | |
| v | Velocity | m/s | |
| Porosity | 0.34 | – | |
| A | Cross section | m2 | |
| Head difference | 0.014 | m | |
| L | Tank length | 0.265 | m |
| W | Tank width | 0.2 | m |
| H | Tank height | 0.01 | m |
| i | Hydraulic gradient | – | |
| Initial hydraulic cond. | 145.4 | m/d | |
| CaCl2 | 5 | mol/kgw | |
| Na2CO3 | 2 | mol/kgw | |
| cf | 145.4 | mg/l |
| Symbols | Parameters | Value | Units |
|---|---|---|---|
| W | Aquifer width | 0.2 | m |
| L | Aquifer length | 0.265 | m |
| H | Aquifer height | 0.01 | m |
| Q | Total flow rate | 0.0154 | m3/d |
| Initial porosity | 0.34 | - | |
| Initial hydraulic cond. | 145.4 | m/d |
| Symbol | Parameter | Value | Unit |
|---|---|---|---|
| Longitudinal dispersivity | 0.00265 | m | |
| Transverse dispersivity | 0.001 | m | |
| R2 | Coefficient of determination | 0.9939 | - |
| RMSE | Root mean squared error | 0.01946 | - |
| Field | (m/d) | R2 | RMSE | AIC | |
|---|---|---|---|---|---|
| 1 | 8 | 0.055 | 0.7053 | 0.1022 | 998.66 |
| 2 | 17 | 0.117 | 0.9180 | 0.0539 | 279.52 |
| 3 | 37 | 0.254 | 0.9595 | 0.0379 | -116.33 |
| 4 | 60 | 0.413 | 0.9838 | 0.0239 | -634.57 |
| Field | (m/d) | (m/d) | R2 | RMSE | AIC | ||
|---|---|---|---|---|---|---|---|
| 1-2 | 22 | 13 | 0.151 | 0.089 | 0.934 | 0.048 | 151.22 |
| 1-3 | 45 | 20 | 0.310 | 0.138 | 0.964 | 0.035 | -203.80 |
| 2-3 | 65 | 30 | 0.447 | 0.206 | 0.955 | 0.039 | -82.17 |
| Field | (m/d) | (m/d) | R2 | RMSE | AIC | ||
|---|---|---|---|---|---|---|---|
| 4-3 | 88 | 48 | 0.605 | 0.330 | 0.988 | 0.019 | -890.46 |
| 4-2 | 78 | 32 | 0.536 | 0.220 | 0.985 | 0.022 | -725.68 |
| 4-1 | 73 | 17 | 0.502 | 0.117 | 0.991 | 0.017 | -1015.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
