Submitted:
26 January 2026
Posted:
27 January 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Material and Methods
2.1. Water-Holding Capacity Test
2.2. Hydroponic System
2.3. Experimental Plants and Substrates

2.4. BET Analysis Methodology
2.5. GS–MS Analysis Methodology
3. Results
3.1. Substrate Characterization
3.1.1. Physical Properties of Zeolites
3.1.2. BET Surface Area
3.2. Experiment 1: Growth Dynamics of Medicago sativa L.
3.3. Experiment 2: Growth Dynamics of Lactuca sativa L.
3.4. GC–MS Analysis of Metabolites in Lactuca sativa L.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| BET | Brunauer-Emmett-Teller method |
| FAO | Food and Agriculture Organization of the United Nations |
| LED | Light-Emitting Diode |
| UV | Ultraviolet |
| IR | Infrared |
| PHPR | plant-microbe-soil interactions |
| NFT | Nutrient Film Technique |
| FZ | fine-fraction zeolite |
| CZ | coarse-fraction zeolite |
| Z | Zeolite |
| GP | GrowPlant |
| AB | American Brown |
| Y | Yeralash |
| MK | May King |
| GC-MS | gas chromatography coupled to mass spectrometry |
Appendix A
Appendix A.1. Comparative morphology of Medicago sativa seedlings

Appendix B
Appendix B.1. – Chromatographic analysis of Lactuca sativa extracts
| Class | Subclass | Compound name | No.1.1.1 AB GP leaves | No.1.1.2 AB GP roots | No.1.2.1 AB Z leaves | No.1.2.2 AB Z roots | No.2.1.1 MK GP leaves | No.2.1.2 MK GP roots | No.2.2.1 MK Z leaves | No.2.2.2 MK Z roots | No.3.1.1 Y GP leaves | No.3.1.2 Y GP roots | No.3.2.1 Y Z leaves | No.3.2.2 Y Z roots |
| I. Lipids and Derivatives | 1. Fatty Acids (FA) | Dodecanoic acid (Lauric acid) | 22,33 | 5,73 | 5,93 | 0,86 | 19,5 | - | - | 28,41 | 15,6 | 1,52 | 9,19 | - |
| Tetradecanoic acid (Myristic acid) | 0,54 | - | - | - | - | - | - | 0,74 | - | - | 1,15 | - | ||
| Hexadecanoic acid (Palmitic acid) | 8,97 | 1,44 | 15,22 | 20,56 | 10,08 | - | - | 9,98 | 8,59 | - | 10,82 | 10,71 | ||
| Octadecanoic acid | - | - | 20,94 | - | 2,49 | - | - | - | 1,22 | - | - | - | ||
| Eicosanoic acid | 0,18 | - | 0,52 | - | - | - | - | - | - | - | - | - | ||
| 9-Octadecenoic acid, (E)- | - | - | - | 24,69 | - | - | - | - | - | - | - | - | ||
| Oleic Acid | 6,9 | 14,01 | - | - | - | - | - | 5,09 | - | 2,54 | 5,17 | - | ||
| Linoelaidic acid | - | - | - | - | - | - | - | - | - | 5,1 | - | - | ||
| 9,12-Octadecadienoic acid (Z,Z) | 13,6 | 26,89 | 23,98 | 21,41 | 2,17 | - | 12,6 | 5,34 | 2,11 | - | 5,95 | 3,24 | ||
| 9,12,15-Octadecatrienoic acid (Z,Z,Z) | 2,16 | 2,14 | 3,46 | - | - | - | - | 1,71 | 1,55 | 1,21 | 4,04 | - | ||
| 2. FA Derivatives | Dodecanoyl chloride | 0,64 | - | - | - | - | - | - | 0,92 | 0,75 | - | 1,19 | - | |
| Lauric anhydride | 0,93 | - | - | - | - | - | - | - | 0,99 | - | 0,9 | - | ||
| Dodecanoic acid, ethyl ester | - | 1,27 | 0,97 | - | 5,94 | 4 | 7,15 | - | 3,55 | - | 2,05 | - | ||
| Dodecanoic acid, tetradecyl ester | - | - | - | - | - | - | - | 3,49 | 2,82 | - | - | - | ||
| Dodecanoic acid, hexadecyl ester | - | - | - | - | - | - | - | - | - | - | 1,35 | - | ||
| Hexadecanoic acid, ethyl ester | - | 11,52 | - | - | - | 8,08 | 15,2 | - | - | - | - | - | ||
| Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | - | - | - | - | - | - | - | 0,69 | - | - | - | - | ||
| Ethyl stearate, mono 9-epoxy | - | - | 0,32 | 0,39 | - | - | - | - | - | - | - | - | ||
| Ethyl stearate, 9,12-diepoxy | - | - | 0,41 | - | - | - | - | - | - | - | - | - | ||
| Ethyl oleate | - | - | - | - | - | - | - | - | - | - | 0,32 | - | ||
| (E)-9-Octadecenoic acid ethyl ester | 1,89 | 2,78 | 3,75 | 5,83 | - | - | - | - | - | - | - | - | ||
| Linoleic acid ethyl ester | - | 7,45 | - | - | - | - | - | - | - | - | - | 1,9 | ||
| 9,12-Octadecadienoic acid, ethyl ester | 4,2 | - | 7,97 | 10,93 | - | - | 8,31 | 1,07 | - | - | 1,42 | - | ||
| 9,12-Octadecadienoic acid (Z,Z)-, methyl ester | - | - | 0,18 | - | - | - | - | - | - | - | - | - | ||
| 9,12-Octadecadienoic acid (Z,Z)-, 2-hydroxy-1- (hydroxymethyl) ethyl ester | 1,94 | - | - | - | - | - | - | - | - | - | - | - | ||
| 9,12,15-Octadecatrienoic acid, methyl ester (Z,Z,Z)- | - | 1,49 | - | - | - | - | - | - | - | - | - | - | ||
| 9,12,15-Octadecatrienoic acid, ethyl ester (Z,Z,Z)- | - | - | 1,89 | - | - | - | - | - | 0,2 | - | 0,92 | - | ||
| Eicosanoic acid, ethyl ester | - | - | 0,24 | 0,26 | - | - | - | - | - | - | - | - | ||
| Undecanoic acid, ethyl ester | - | - | - | - | - | - | - | - | - | 0,98 | - | - | ||
| Octanoic acid, 2-dimethylaminoethyl ester | 0,43 | - | - | - | - | - | - | - | 0,57 | 0,49 | 1,15 | - | ||
| 3-Cyclopentylpropionic acid, 2-dimethylaminoethyl ester | 0,24 | - | - | - | - | - | - | 0,83 | - | - | - | - | ||
| II. Terpenoids (Isoprenoids) | 3. Sesquiterpenes (C15) | Farnesyl bromide | - | - | - | - | - | - | - | - | - | 3,77 | - | - |
| 4. Diterpenoids (C20) | Neophytadiene | 0,43 | - | 0,19 | - | - | - | - | 0,59 | 0,84 | - | 1,32 | - | |
| 3,7,11,15-Tetramethyl-2-hexadecen-1-ol (Phytol) | 1,98 | 0,88 | 1,15 | - | - | - | - | 1,99 | 1,93 | - | 1,93 | - | ||
| 5. Triterpenoids (C30) | Squalene | - | - | - | - | - | - | - | - | - | 0,71 | 0,25 | 1,1 | |
| Lanosta-8,24-dien-3-ol, acetate, (3β)- | 0,67 | - | - | - | - | - | - | - | 4,4 | - | 1,81 | - | ||
| 9,19-Cyclolanost-24-en-3-ol, acetate (3β) | - | - | - | - | - | - | - | - | 1,55 | - | 1,44 | - | ||
| Stigmasterol | - | - | - | - | - | - | - | 1,86 | 3,74 | 9,67 | 4,44 | 18,15 | ||
| β-Sitosterol | - | - | - | - | - | - | - | - | - | - | 0,71 | - | ||
| Olean-12-en-3-one | - | - | 0,35 | - | 15,25 | - | - | - | - | - | - | - | ||
| Olean-12-en-3-ol, acetate, (3β)- | 9,54 | 10,32 | 3,2 | 6 | - | 36,29 | 27,38 | 11,17 | 17,25 | 22,43 | 13,8 | 26,16 | ||
| Urs-12-en-3-ol, acetate, (3β)- | - | - | - | - | - | 8,09 | - | - | - | - | - | 9,23 | ||
| 13,27-Cycloursan-3-ol,acetate, (3β,13β,14β)- | - | - | - | - | - | - | - | - | - | 5,04 | - | - | ||
| Lup-20(29)-en-3-ol, acetate, (3β)- | 4,11 | 3,74 | 1,56 | 5,86 | 14,11 | 13,81 | 8,01 | 4,6 | 7,78 | 27,33 | 5,62 | 14,3 | ||
| γ-Tocopherol | - | - | - | - | - | - | - | - | 0,41 | - | 0,35 | - | ||
| III. Nitrogen-Containing Compounds | 6. Amines | Propylamine, N,N,2,2-tetramethyl-, N-oxide | 0,67 | - | - | - | - | - | - | - | - | - | - | - |
| 2-Propanamine, N-methyl-N-nitroso- | - | - | - | - | - | - | - | - | - | - | 0,23 | - | ||
| 7. Amides | Formamide, N-methoxy- | 0,82 | - | - | - | - | - | - | - | - | - | - | - | |
| 8. Heterocycles | Thymine | 0,58 | - | - | - | - | - | - | - | 0,82 | - | - | - | |
| 3H-Pyrazol-3-one, 2,4-dihydro-2,4,5-trimethyl- | - | - | - | - | - | - | - | - | - | 1 | - | - | ||
| IV. Carbohydrates and Intermediates | 9. Polyols | Glycerin (Glycerol) | - | - | 1,58 | 0,49 | - | - | - | - | - | - | 0,57 | - |
| Dihydroxyacetone | - | - | - | - | - | - | - | - | 0,48 | - | 0,48 | - | ||
| 1,2,3,4-Cyclohexanetetrol | - | - | - | - | - | - | - | - | - | - | 2,36 | - | ||
| 1,2,3,5-Cyclohexanetetrol | - | - | - | - | - | - | - | - | - | - | - | - | ||
| 1,2,3,5-Cyclohexanetetrol (1α,2β,3α,5β) | 1,95 | - | - | - | - | - | - | 2,97 | - | - | - | - | ||
| 10. Sugars and Derivatives | D-Allose | - | 0,54 | - | - | - | - | - | - | - | 0,66 | - | - | |
| 5-Hydroxymethylfurfural (5-HMF) | - | - | - | - | - | - | - | - | - | - | 0,23 | - | ||
| 3-Deoxy-d-mannonic acid | 1,04 | 1,19 | 0,85 | - | 0,79 | - | - | 2,19 | 1,37 | - | - | - | ||
| 3-Deoxy-d-mannoic lactone | 1,81 | - | - | - | 3,06 | - | - | - | 2,4 | - | 1,92 | - | ||
| β-D-Glucopyranose, 1,6-anhydro- | - | - | - | - | - | - | 1,2 | - | - | - | - | - | ||
| Vanillin lactoside | - | - | - | - | - | - | - | - | - | - | 0,54 | - | ||
| Sucrose | 6,68 | 5,97 | 3,84 | 2,72 | 13,43 | 18,92 | 11,17 | 8,28 | 9,87 | 11,02 | 9,86 | 9,28 | ||
| Melezitose | - | - | - | - | - | - | - | 0,44 | - | - | - | - | ||
| V. Other Organics | 11. Phenolic Compounds | Phenol, 4,4’-(1-methylethylidene)bis- (Bisphenol A structure) | 0,2 | 0,32 | - | - | 0,64 | 3,23 | 1,9 | 0,3 | 0,44 | 1,27 | 0,21 | 1,08 |
| Phenol, 2-[5-(2-furanyl)pyrazol-3-yl]-5-methyl- | - | - | - | - | - | - | - | 0,35 | 0,23 | 0,78 | 0,21 | 0,94 | ||
| 12. Alcohols, Aldehydes, Ketones | Cyclopropyl carbinol | 0,55 | - | 0,27 | - | 0,86 | - | - | 0,64 | 0,58 | - | 0,56 | - | |
| Falcarinol | - | - | - | - | - | - | - | - | - | 1,12 | - | - | ||
| Succindialdehyde | - | - | - | - | - | - | 2,11 | - | - | - | - | - | ||
| 2-Cyclopenten-1-one, 2-hydroxy- | 0,32 | - | - | - | - | - | - | - | - | - | 0,23 | - | ||
| 2-Pentadecanone, 6,10,14-trimethyl- | - | - | - | - | 0,98 | - | - | 0,94 | - | - | 0,51 | - | ||
| 2-Nonadecanone | - | - | - | - | - | - | - | - | - | - | - | 1,5 | ||
| 13. Heterocycles (Furans/Pyrones) | Furanacol | 0,6 | - | - | - | - | - | - | - | - | - | - | - | |
| 2(5H)-Furanone, 5-(1-methylethyl)- | - | - | - | - | - | - | - | - | - | - | 0,45 | - | ||
| Maltol | - | - | - | - | 1,22 | - | - | 0,66 | - | - | 0,65 | - | ||
| 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- | - | - | - | - | - | - | - | 0,4 | 0,52 | - | 0,53 | - | ||
| 14. Acids, Esters, and Lactones | Quinic acid | - | - | - | - | 3,7 | - | - | - | 2,9 | - | - | - | |
| 2-Hydroxy-gamma-butyrolactone | 1,08 | 1,12 | 0,55 | - | 1,65 | 2,36 | - | 1,12 | 1,23 | 1,07 | 0,81 | - | ||
| 4,8,12,16-Tetramethylheptadecan-4-olide | - | - | - | - | - | - | - | - | 0,31 | - | 0,31 | - | ||
| Dihydrodehydrocostus lactone | - | - | - | - | - | - | - | - | - | - | - | 0,58 | ||
| Propanoic acid, 2-oxo-, methyl ester | 2,03 | 1,2 | 0,69 | - | 4,12 | - | 4,97 | 2,81 | 3,02 | 2,31 | 2,02 | - | ||
| Ethyl acetoxycarbamate | - | - | - | - | - | 5,21 | - | - | - | - | - | - | ||
| Fumaric acid, 2-dimethylaminoethyl nonyl ester | - | - | - | - | - | - | - | 0,41 | - | - | - | - | ||
| Diisooctyl phthalate | - | - | - | - | - | - | - | - | - | - | - | 0,35 | ||
| 1,4-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester | - | - | - | - | - | - | - | - | - | - | - | 1,46 |
References
- Velazquez-Gonzalez, R.S.; Garcia-Garcia, A.L.; Ventura-Zapata, E.; Barceinas-Sanchez, J.D.O.; Sosa-Savedra, J.C. A Review on Hydroponics and the Technologies Associated for Medium- and Small-Scale Operations. Agriculture 2022, 12, 646. [Google Scholar] [CrossRef]
- Park, Y.; Williams, K.A. Organic Hydroponics: A Review. Sci. Hortic. 2024, 324, 112604. [Google Scholar] [CrossRef]
- Yessymkhanova, Z.; et al. Application of Zeolite Substrates in Hydroponic Systems. IOP Conf. Ser. Earth Environ. Sci. 2021, 937, 032012. [Google Scholar] [CrossRef]
- Rakhimova, M.; Zulpykharov, K.; Assylbekova, A.; Zhengissova, N.; Taukebayev, O. Using the Revised Universal Soil Loss Equation and Global Climate Models (CMIP6) to Predict Potential Soil Erosion Associated with Climate Change in the Talas District, Kazakhstan. Sustainability 2024, 16, 574. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation Techniques for Heavy Metal-Contaminated Soils: Principles and Applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of Heavy Metals—Concepts and Applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Rosas-Ramírez, M.; Tovar-Sánchez, E.; Rodríguez, A.; Castrejón-Godínez, M.L.; Saldarriaga-Noreña, H.A.; Bretón-Deval, L.; Mussali-Galante, P. Phytoremediation Potential of Heavy Metals Using Biochar and Accumulator Plants: A Sustainable Approach towards Cleaner Environments. Plants 2025, 14, 3470. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-W.; Sung, Y.; Chen, B.-C.; Lai, H.-Y. Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.). Int. J. Environ. Res. Public Health 2014, 11, 4427–4440. [Google Scholar] [CrossRef]
- Srivastava, A.; Chinnasamy, P. Investigating Impact of Land-Use and Land-Cover Changes on Hydro-Ecological Balance Using GIS: Insights from IIT Bombay, India. SN Appl. Sci. 2021, 3, 343. [Google Scholar] [CrossRef]
- Yamov, P.S. Hydroponics. In Actual Issues of Science and Agriculture: New Challenges and Solutions [Aktual’nye voprosy nauki i khozyaistva: novye vyzovy i resheniya] Proceedings of the LV Student Scientific Conference, Tyumen, Russia, 17–19 March 2021; State Agrarian University of the Northern Trans-Urals: Tyumen, Russia, 2021; pp. 743–746. [Google Scholar]
- Aires, A. Hydroponic Production Systems: Impact on Nutritional Status and Bioactive Compounds of Fresh Vegetables. In Vegetables—Importance of Quality Vegetables to Human Health; InTech: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef]
- Makarov, P.N.; Makarova, T.A.; Samoylenko, Z.A.; Gulakova, N.M. Technology of Essential Oil Crop Cultivation in Closed Systems [Tekhnologiya vyrashchivaniya efiromaslichnykh kul’tur v zakrytykh sistemakh]. Vestnik NVGU 2020, 2. [Google Scholar] [CrossRef]
- Litvin, A.G.; Currey, C.J.; Wilson, L.A. Effects of Supplemental Light Source on Basil, Dill, and Parsley Growth, Morphology, Aroma, and Flavor. J. Am. Soc. Hortic. Sci. 2020, 145, 18–29. [Google Scholar] [CrossRef]
- Maboko, M.M.; Du Plooy, C.P. High-Plant Density Planting of Basil (Ocimum basilicum) during the Summer/Fall Growth Season Improves Yield in a Closed Hydroponic System. Acta Agric. Scand. Sect. B Soil Plant Sci. 2013, 63, 748–752. [Google Scholar] [CrossRef]
- Yeo, K.F.H.; Li, C.; Zhang, H.; Chen, J.; Wang, W.; Dong, Y. Arsenic Removal from Contaminated Water Using Natural Adsorbents: A Review. Coatings 2021, 11, 1407. [Google Scholar] [CrossRef]
- Zahid, M.; Doszhanov, Y.; Saurykova, K.; Ahmadi, N.; Bolatova, D.; Kurmanbayeva, M.; Aydarbek, A.; Ihsas, R.; Seitzhanova, M.; Akhmetzhanova, D.; et al. Modification and Application of Natural Clinoptilolite and Mordenite from the Almaty Region for Drinking Water Purification. Molecules 2025, 30. [Google Scholar] [CrossRef]
- Karličić, V.; Živanović, I.; Matijašević, D.; Raičević, V.; Nikšić, M.; Rac, V.; Simić, A. Stimulation of Soil Microbiological Activity by Clinoptilolite: The Effect on Plant Growth. Ratarstvo i Povrtarstvo 2016, 65, 709–719. [Google Scholar] [CrossRef]
- Allanas, E.; Rahman, A.; Arlin, E.; Prasetyanto, E.A. Study of Surface Area and Pore Size Distribution of Synthetic Zeolite X Using BET, BJH and DFT Methods. J. Phys. Conf. Ser. 2021, 2019, 012094. [Google Scholar] [CrossRef]
- Podkovyrov, I.Y.; Kostin, M.V.; Dolgova, A.I.; Filipchuk, O.D.; Nesvat, A.P. Influence of Zeolites on the Intensity of Vital Processes of Hybrid Plant Forms [Vliyanie tseolitov na intensivnost’ zhiznennykh protsessov gibridnykh form rastenii)]. Vestnik Kazan State Agrarian University 2019, 2, 53. [Google Scholar]
- Morrone, L.; Neri, L.; Facini, O.; Galamini, G.; Ferretti, G.; Rotondi, A. Influence of Chabazite Zeolite Foliar Applications Used for Olive Fruit Fly Control on Volatile Organic Compound Emission, Photosynthesis, and Quality of Extra Virgin Olive Oil. Plants 2024, 13, 698. [Google Scholar] [CrossRef]
- Bonasia, A.; Lazzizera, C.; Elia, A.; Conversa, G. Pre-Harvest Strategy for Improving Harvest and Post-Harvest Performance of Kale and Chicory Baby Leaves. Plants 2025, 14, 863. [Google Scholar] [CrossRef]
- Moale, C.; Ghiurea, M.; Sîrbu, C.E.; et al. Effects of Siliceous Natural Nanomaterials Applied in Combination with Foliar Fertilizers on Physiology, Yield and Fruit Quality of Apricot and Peach Trees. Plants 2021, 10, 2395. [Google Scholar] [CrossRef]
- Huwei, S.; Asghari, M.; Zahedipour-Sheshglani, P.; Alizadeh, M. Modeling and Optimizing Changes in Physical and Biochemical Properties of Table Grapes in Response to Natural Zeolite Treatment. LWT 2021, 141, 110854. [Google Scholar] [CrossRef]
- Lednev, A.V.; Lozhkin, A.V. Remediation of Cadmium-Contaminated Sod-Podzolic Soils [Remediatsiya zagryaznennykh kadmiem agrodernovo-podzolistykh pochv]. Eurasian Soil Sci. 2017, 50, 624–633. [Google Scholar] [CrossRef]
- Shabaeva, V.P.; Bocharnikova, E.A.; Ostroumov, V.E. Remediation of Cadmium-Contaminated Soil Using Plant Growth-Promoting Rhizobacteria and Natural Zeolite [Remediatsiya zagryaznennoi kadmiem pochvy pri primenenii stimuliruyushchikh rost rastenii rizobakterii i prirodnogo tseolita]. Eurasian Soil Sci. 2020, 6. [Google Scholar]
- Forest Encyclopedia [Lesnaya entsiklopediya]; Vorobyev, G.I., Ed.; Soviet Encyclopedia: Moscow, USSR, 1985; p. 563 p. [Google Scholar]
- Kheirabadi, M.; Azizi, M.; Taghizadeh, S.F.; Fujii, Y. Recent Advances in Saffron Soil Remediation: Activated Carbon and Zeolites Effects on Allelopathic Potential. Plants 2020, 9, 1714. [Google Scholar] [CrossRef] [PubMed]
- Turisová, I.; Kviatková, T.; Możdżeń, K.; Barabasz-Krasny, B. Effects of Natural Sorbents on the Germination and Early Growth of Grasses on Soils Contaminated by Potentially Toxic Elements. Plants 2020, 9, 1591. [Google Scholar] [CrossRef]
- Akhmetzhanova, D.; Sabitov, A.; Doszhanov, Y.; Atamanov, M.; Saurykova, K.; Zhumazhanov, A.; Atamanova, T.; Kerimkulova, A.; Velasco, L.F.; Zhumagalieva, A.; Jandosov, J.; Doszhanov, O. Zeolites and Activated Carbons in Hydroponics: A Systematic Review of Mechanisms, Performance Metrics. Techno-Economic Analysis and Life-Cycle Assessment // Sustainability 2025, 17, 10977. [Google Scholar] [CrossRef]
- Doszhanov, Y.; Atamanov, M.; Jandosov, J.; et al. Preparation of Granular Organic Iodine and Selenium Complex Fertilizer Based on Biochar for Biofortification of Parsley. Scientifica 2024, 2024, 6601899. [Google Scholar] [CrossRef]
- Um, D.; Koram, C.; Nethala, P.; et al. Beyond Color: Phenomic and Physiological Tomato Harvest Maturity Assessment in an NFT Hydroponic Growing System. Agronomy 2025, 15, 1524. [Google Scholar] [CrossRef]
- Scasta, J.D.; Trostle, C.; Foster, M.A. Evaluating Alfalfa (Medicago sativa L.) Cultivars for Salt Tolerance Using Laboratory, Greenhouse and Field Methods. J. Agric. Sci. 2012, 4, 90–101. [Google Scholar] [CrossRef]
- Křístková, E.; Doležalová, I.; Lebeda, A.; Vinter, V.; Novotná, A. Description of Morphological Characters of Lettuce (Lactuca sativa L.) Genetic Resources. Hort. Sci. 2008, 35, 113–129. [Google Scholar] [CrossRef]
- Ünlükara, A.; Cemek, B.; Karaman, S.; Erşahin, S. Salinity Effects on Plant Growth and Soil Properties. N. Z. J. Agric. Res 2008. [Google Scholar] [CrossRef]
- Charles, J.; Sancey, B.; Morin-Crini, N.; et al. Evaluation of the Phytotoxicity of Polycontaminated Industrial Effluents Using Lettuce (Lactuca sativa) as a Bioindicator. Ecotoxicol. Environ. Saf. 2011, 74, 2057–2064. [Google Scholar] [CrossRef]
- Ikkonen, E.; Kaznina, N. Physiological Responses of Lettuce (Lactuca sativa L.) to Soil Contamination with Pb. Horticulturae 2022, 8, 951. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; et al. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Ambroz, F.; Macdonald, T.J.; Martis, V.; Parkin, I.P. Evaluation of the BET Theory for the Characterization of Meso- and Microporous MOFs. Small Methods 2018, 2, 1800173. [Google Scholar] [CrossRef]
- Santos, F.J.; Galceran, M.T. Modern Developments in Gas Chromatography–Mass Spectrometry-Based Environmental Analysis. J. Chromatogr. A 2003, 1000, 125–151. [Google Scholar] [CrossRef]
- Dembovetsky, A.V.; Tyugai, Z.; Shein, E.V. The Granulometric Composition of Soils: History, Development of Methods, Current State, and Prospects. Moscow Univ. Soil Sci. Bull. 2024, 79, 387–392. [Google Scholar] [CrossRef]
- Eremin, D.; Eremina, D. Influence of Granulometric Composition Structure of Anthropogenic-Reformed Soil on Ecology of Infrastructure. Procedia Eng. 2016, 165, 788–793. [Google Scholar] [CrossRef]






| Time, min | CZ 50 °C | CZ 22 °C | FZ 50 °C | FZ 22 °C | AC 50 °C | AC 22 °C |
|---|---|---|---|---|---|---|
| 0 | 5,03 | 5,03 | 5,025 | 5,06 | 5,03 | 5,035 |
| 10 | 4,855 | 5,01 | 4,89 | 5,0025 | 5,1375 | 4,939 |
| 30 | 4,31 | 4,9475 | 4,355 | 4,905 | 4,6875 | 4,85 |
| 60 | 3,885 | 4,35 | 3,765 | 4,61 | 4,085 | 4,71 |
| 120 | 3,76 | 4,253 | 3,005 | 4,405 | 2,86 | 4,54 |
| 150 | 1,4995 | 4,054 | 0,805 | 4,115 | 1,695 | 4,32 |
| Day No. | No.1 GrowPlant | No.2 Zeolite | ||||
| stem height, cm | root length, cm | leaves, n | stem height, cm | root length, cm | leaves, n | |
| 5 | 1,14 | 1,89 | 2 | 1,5 | 2,06 | 2 |
| 6 | 3,47 | 4,00 | 3 | 1,66 | 4,91 | 2 |
| 10 | 3,71 | 6,43 | 3,14 | 2,79 | 4,64 | 2,71 |
| 12 | 4,64 | 3,57 | 3,14 | 4 | 4,79 | 3,0 |
| 14 | 6,36 | 4,86 | 4,14 | 3,93 | 5,57 | 3,86 |
| Day No. | No.1.1 AB GP | No.1.2 AB Z | ||||
| stem height, cm | root length, cm | leaves, n | stem height, cm | root length, cm | leaves, n | |
| 3 | - | - | - | - | - | - |
| 7 | - | - | - | - | - | - |
| 9 | 1,8 | 2,8 | 2 | 2 | 2,8 | 2 |
| 15 | 2 | 3,2 | 3 | 2,2 | 3,4 | 0,85 |
| Day No. | No.2.1 MK GP | No.2.2 MK Z | ||||
| stem height, cm | root length, cm | leaves, n | stem height, cm | root length, cm | leaves, n | |
| 3 | 1,3 | 2,1 | 2 | 1,3 | 2,1 | 2 |
| 7 | 2,3 | 2,7 | 2,6 | 2,3 | 2,7 | 2,7 |
| 10 | 3,8 | 3,9 | 3,5 | 3,8 | 3,9 | 3,7 |
| 15 | 4,6 | 5,6 | 4,1 | 4,6 | 5,6 | 4,3 |
| Day No. | No.3.1 Y GP | No.3.2 Y Z | ||||
| stem height, cm | root length, cm | leaves, n | stem height, cm | root length, cm | leaves, n | |
| 3 | 1,5 | 2,25 | 2 | 1,5 | 2,25 | 2 |
| 7 | 2,3 | 2,7 | 2,7 | 2,3 | 2,7 | 2,9 |
| 10 | 3,6 | 4,5 | 3,1 | 3,6 | 4,5 | 3,1 |
| 15 | 4,4 | 7,5 | 3,9 | 4,4 | 7,5 | 4,0 |
| Class | No.1.1.1 AB GP leaves | No.1.1.2 AB GP roots | No.1.2.1 AB Z leaves | No.1.2.2 AB Z roots | No.2.1.1 MK GP leaves | No.2.1.2 MK GP roots | No.2.2.1 MK Z leaves | No.2.2.2 MK Z roots | No.3.1.1 Y GP leaves | No.3.1.2 Y GP roots | No.3.2.1 Y Z leaves | No.3.2.2 Y Z roots |
| 1. Fatty Acids (FA) | 54,68 | 50,21 | 70,05 | 67,52 | 34,24 | 0 | 12,6 | 51,27 | 29,07 | 10,37 | 36,32 | 13,95 |
| 2. FA Derivatives | 10,27 | 24,51 | 15,73 | 17,41 | 5,94 | 12,08 | 30,66 | 7 | 8,88 | 1,47 | 9,3 | 1,9 |
| 3. Terpenoids | 16,73 | 14,94 | 6,45 | 11,86 | 29,36 | 58,19 | 35,39 | 20,21 | 37,9 | 68,95 | 31,67 | 68,94 |
| 4. Nitrogen-Containing Compounds | 2,07 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,82 | 1 | 0,23 | 0 |
| 5. Polyols | 1,95 | 0 | 1,58 | 0,49 | 0 | 0 | 0 | 2,97 | 0,48 | 0 | 3,41 | 0 |
| 6. Sugars and Derivatives | 9,53 | 7,7 | 4,69 | 2,72 | 17,28 | 18,92 | 12,37 | 10,91 | 13,64 | 11,68 | 12,55 | 9,28 |
| 7. Other Organics | 4,78 | 2,64 | 1,51 | 0 | 13,17 | 10,8 | 8,98 | 7,63 | 9,23 | 6,55 | 6,49 | 5,91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
