Submitted:
26 January 2026
Posted:
27 January 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Numerical Model
2.2.1. DHI Mike 21 Model
2.2.2. Model Setup
2.2.3. Hydrodynamic Model of Surface Water Flow and Calibration
2.2.4. Sediment Transport Model and Calibration
2.2.5. Model Uncertainty
2.3. The GHP Operational Scenarios
3. Results
3.1. Surface Water Flow Model Calibration
3.2. Sediment Transport Model Calibration
3.3. The GHP Operational Scenarios Effect on Sediment Transport
3.3.1. Volume of Deposited Sediments in the Fairway at the Critical Ford
3.3.2. Riverbed Elevation in the Fairway at the Critical Ford
4. Discussion
5. Conclusion
- The developed 2D morphodynamic MIKE 21 ST model for the 50 km reach of the Danube downstream of the Gabčíkovo Hydropower Plant (GHP) was successfully calibrated against measured water levels (RMSE: 0.074 m, MAE: 0.064 m, R²: 0.998) and measured sediment transport rate values in the cross-section at rkm 1795.58. The Van Rijn formulation with a calibration factor kb=0.5 was selected as the most suitable sediment transport formula. With this configuration, the model provides a realistic description of the short-term morphological response of the ford to changes in the GHP operational scenario.
- 10-day simulations showed that, for the same daily volume of water passing through the turbines, the volume of newly deposited sediments in the fairway at the critical ford under hydropeaking is approximately 50% smaller than under run-of-river operation (about 189 m³ vs. 373 m³, a difference of ~184 m³). Hydropeaking is therefore capable of reducing the 10-day cumulative volume of deposited sediments in the fairway compared with run-of-river operation, even when model uncertainty expressed by the 95% prediction intervals is taken into account.
- From the viewpoint of the temporal development of the maximum riverbed elevation, operation with hydropeaking is more advantageous, particularly in the right-bank part of the fairway, where the increase in riverbed elevation is about 33–64% smaller than under run-of-river operation. Nevertheless, the required minimum depth of 2.7 m is not ensured across the entire cross-section of the ford under either scenario, so morphological flow management cannot fully replace technical interventions (dredging), but it can extend the interval between them.
- Under the conditions of the studied reach, from the point of view of maintaining navigable depth, an operational scenario of the GHP that includes regulated short-term discharge peaks (daily hydropeaking) can be considered more advantageous than purely run-of-river operation with a steady discharge, while keeping the total daily volume of used water the same. Hydropeaking can reduce the volume of deposited sediments in the fairway and potentially extend the interval between dredging interventions, which translates into lower fairway maintenance costs and reduced ecological impacts associated with frequent dredging.
- Although, from the navigation perspective, hydropeaking appears favourable in the analysed scenario, the known consequences of discharge fluctuations (bank erosion, habitat degradation, reduction in navigation safety) do not allow its broader implementation to be recommended automatically without a comprehensive assessment. Future modifications of the operation of the GHP should therefore be based on an integrated assessment that combines morphological, navigational, energy and ecological criteria within a common optimisation framework.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Julien, P.Y. (2018). River mechanics. Cambridge University Press. [CrossRef]
- Kondolf, G. M.; Wilcock, P. R. (1996). The Flushing Flow Problem: Defining and Evaluating Objectives. Water Resources Research. 32 (8), pp. 2329-2615. https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/96WR00898.
- Loire, R.; Piégay, H.; Malavoi, J. R.; Kondolf, G. M.; Bêche, L. A. (2021). From flushing flows to (eco)morphogenic releases: evolving terminology, practice, and integration into river management. Earth-Science Reviews, Volume 213, 103475. [CrossRef]
- Smokorowski, K.E. (2022). The ups and downs of hydropeaking: a Canadian perspective on the need for, and ecological costs of, peaking hydropower production. Hydrobiologia, 849, 421–441. DOI: 10.1007/s10750-020-04480-y. https://link.springer.com/article/10.1007/s10750-020-04480-y.
- Dynesius, M.; Nilsson, C. (1994). Fragmentation and flow regulation of river systems in the northern third of the world. Science, 266(5186), pp.753-762. https://www.science.org/doi/10.1126/science.266.5186.753.
- Kondolf, G. (1997). PROFILE: Hungry Water: Effects of Dams and Gravel Mining on River Channels. Environmental Management 21 , 533 –551. [CrossRef]
- Arthington, Á.H.; Naiman, R.J.; Mcclain, M.E.; Nilsson, C. (2010). Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities. Freshwater biology, 55(1), pp.1-16. [CrossRef]
- Carolli, M.; Vanzo, D.; Siviglia, A.; Zolezzi, G.; Bruno, M.C.; Alfredsen, K. (2015). A simple procedure for the assessment of hydropeaking flow alterations applied to several European streams. Aquatic sciences, 77, pp.639-653. [CrossRef]
- Vanzo, D.; Siviglia, A.; Carolli, M.; Zolezzi, G. (2016). Characterization of sub-daily thermal regime in alpine rivers: quantification of alterations induced by hydropeaking. Hydrological processes, 30(7), pp.1052-1070. [CrossRef]
- Bejarano, M.D.; Sordo-Ward, Á.; Alonso, C.; Nilsson, C. (2017). Characterizing effects of hydropower plants on sub-daily flow regimes. Journal of hydrology, 550, pp.186-200. [CrossRef]
- Ashraf, F.B.; Haghighi, A.T.; Riml, J.; Alfredsen, K.; Koskela, J.J.; Kløve, B.; Marttila, H. (2018). Changes in short term river flow regulation and hydropeaking in Nordic rivers. Scientific reports, 8(1), p. 17 232. [CrossRef]
- Tonkin, J.D.; Merritt, D.M.; Olden, J.D.; Reynolds, L.V.; Lytle, D.A. (2018). Flow regime alteration degrades ecological networks in riparian ecosystems. Nature ecology & evolution, 2(1), pp.86-93. [CrossRef]
- Zhang, Y.; Zhai, X.; Zhao, T. (2018). Annual shifts of flow regime alteration: new insights from the Chaishitan Reservoir in China. Scientific reports, 8(1), p.1414. [CrossRef]
- Bejarano, M.D.; Jansson, R.; Nilsson, C. (2018). The effects of hydropeaking on riverine plants: a review. Biological Reviews, 93(1), pp. 658-673. [CrossRef]
- Ziliotto, F.; Basilio Hazas, M.; Rolle, M.; Chiogna G. (2021). Mixing enhancement mechanisms in aquifers affected by hydropeaking: insights from flow-through laboratory experiments. Geophys. Res. Lett., 48, . [CrossRef]
- Hauer, C.; Holzapfel, P.; Tonolla, D.; Habersack, H.; Zolezzi, G. (2019). In situ measurements of fine sediment infiltration (FSI) in gravel-bed rivers with a hydropeaking flow regime. Earth Surf. Process. Landf., 44, pp. 433-448, . [CrossRef]
- López, R.; Garcia, C.; Vericat, D.; Batalla, R.J. (2020). Downstream changes of particle entrainment in a hydropeaked river. Sci. Total Environ., 745, . [CrossRef]
- Vericat, D.; Ville, F.; Palau-Ibars, A.; Batalla, R.J. (2020). Effects of hydropeaking on bed mobility: evidence from a Pyrenean river. Water (Switzerland), 12, . [CrossRef]
- Trung, L.D.; Duc, N.A.; Nguyen, L.T.; Thai, T.H.; Khan, A.; Rautenstrauch, K.; Schmidt, C. (2020). Assessing cumulative impacts of the proposed lower Mekong Basin hydropower cascade on the Mekong River floodplains and Delta – overview of integrated modeling methods and results. J. Hydrol. (Amst.), 581, . [CrossRef]
- López, R.; Ville, F.; Garcia, C.; Batalla, R.J.; Vericat, D. (2023). Bed-material entrainment in a mountain river affected by hydropeaking, Sci. Total Environ., 856, . [CrossRef]
- Gierszewski, P.J.; Habel, M.; Szmańda, J.; Luc, M. (2020). Evaluating effects of dam operation on flow regimes and riverbed adaptation to those changes. Sci. Total Environ., 710, . [CrossRef]
- Szmańda, J.B.; Gierszewski, P.J.; Habel, M.; Luc, M.; Witkowski, K.; Bortnyk, S.; Obodovskyi, O. (2021). Response of the Dnieper River fluvial system to the river erosion caused by the operation of the Kaniv hydro-electric power plant (Ukraine). Catena (Amst.), 202, . [CrossRef]
- Fošumpaur, P.; Králik, M.; Zukal, M. (2010). Physical and numerical modelling in the research of hydraulic structures. In: Proceedings of the International Conference on Modelling and Simulation 2010, 22 – 25 June 2010, Prague, Czech Republic. https://www.researchgate.net/publication/332415598_Physical_and_numerical_modelling_in_the_research_of_hydraulic_structures#fullTextFileContent.
- Habersack, H.; Hengl, M.; Huber, B.; Lalk, P.; Tritthart, M. (2011). Fließgewässermodellierung–Arbeitsbehelf Feststofftransport und Gewässermorphologie. Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management and Österreichischer Wasser-und Abfallwirtschaftsverband ÖWAV, Vienna. https://info.bml.gv.at/dam/jcr:bddb0f2b-a454-4b9f-915a-57553d88461f/Flie%C3%9Fgew%C3%A4ssermodellierung-AB%20Feststofftransport%20und%20Gew%C3%A4ssermorphologie.pdf.
- Engelund, F.; Hansen, E. (1967). A monograph on sediment transport in alluvial streams. Technical University of Denmark 0stervoldgade 10, Copenhagen K. https://scispace.com/pdf/a-monograph-on-sediment-transport-in-alluvial-streams-5782l9wpz2.pdf.
- Van Rijn, L.C. (1984). Sediment transport, part I: bed load transport. Journal of hydraulic engineering, 110(10), pp.1431-1456. [CrossRef]
- Meyer-Peter, E.; Müller, R. (1948). Formulas for bed-load transport. In: Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research. Stockholm, Sweden, pp. 39–64. https://scispace.com/pdf/formulas-for-bed-load-transport-32ronh3p7c.pdf.
- Engelund, F.; Fredsøe, J. (1976). A sediment transport model for straight alluvial channels. Hydrology Research, 7(5), pp. 293-306. [CrossRef]
- Summer, W.; Stritzinger, W.; Zhang, W. (1994). The impact of run-of-river hydropower plants on temporal suspended sediment transport behaviour. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 224, pp.411-420. https://iahs.info/uploads/dms/9867.411-419-224-Summer.pdf.
- Csiki, S.; Rhoads, B.L. (2010). Hydraulic and geomorphological effects of run-of-river dams. Progress in physical geography, 34(6), pp.755-780. [CrossRef]
- Holubová, K.; Čomaj, M.; Lukáč, M.; Mravcová, K.; Capeková, Z.; Antalová, M. (2015). Final report in DuRe Flood project - ‘Danube Floodplain Rehabilitation to Improve Flood Protection and Enhance the Ecological Values of the River in the Stretch between Sap and Szob. Danube Transnational Programme: Bratislava, Slovakia.
- Török, G.T.; Baranya, S. (2017). Morphological investigation of a critical reach of the upper Hungarian Danube. Periodica Polytechnica Civil Engineering, 61(4), pp.752-761. [CrossRef]
- DHI (2017). MIKE 21 & MIKE 3 FLOW MODEL FM. Hydrodynamic and Transport Module. Scientific Documentation. DHI Water & Environment.
- DHI (2017). MIKE 21 & MIKE 3 FLOW MODEL FM. Sand Transport Module. Scientific Documentation. DHI Water & Environment.
- Gómez-Zambrano, H.J.; López-Ríos, V.I.; Toro-Botero, F.M. (2017). New methodology for calibration of hydrodynamic models in curved open-channel flow. Revista Facultad de Ingeniería Universidad de Antioquia, (83), pp. 82-91. [CrossRef]
- Camenen, B.; Holubová, K.; Lukač, M.; Le Coz, J.; Paquier, A. (2011). Assessment of methods used in 1D models for computing bed-load transport in a large river: the Danube River in Slovakia. Journal of hydraulic engineering, 137(10), pp. 1190-1199. [CrossRef]
- Allen, J. (2012). Principles of physical sedimentology. Springer Science & Business Media.
- Frings, R.M.; Schüttrumpf, H.; Vollmer, S. (2011). Verification of porosity predictors for fluvial sand-gravel deposits. Water Resources Research, 47(7). [CrossRef]
- Lukáč, M.; Holubová, K.; Szolgay, J. (2002). Research on the suspended and bed load regime of the Danube downstream of Sap. Final report. VÚVH Bratislava, Slovakia.
- Mahadevan, S.; Sarkar, S. (2009). Uncertainty analysis methods. US Department of Energy, Washington, DC, USA. https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1701_add-CD/PDF/USA%20Attachment%2012.pdf.
- Walters, R.W.; Huyse, L. (2002). Uncertainty analysis for fluid mechanics with applications. https://www.cs.odu.edu/~mln/ltrs-pdfs/icase-2002-1.pdf.
- Dalledonne, G.; Kopmann, R.; Riehme, J.; Naumann, U. (2017). Uncertainty analysis approximation for non-linear processes using Telemac-AD. In Proceedings of the XXIVth TELEMAC-MASCARET User Conference, 17 to 20 October 2017, Graz University of Technology, Austria (pp. 65-71). https://henry.baw.de/server/api/core/bitstreams/8aac7019-f2d5-4724-8a7b-fc223376afd7/content.
- Melching, C.S. (1992). An improved first-order reliability approach for assessing uncertainties in hydrologic modeling. Journal of Hydrology, 132(1-4), pp.157-177. [CrossRef]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. (2008). Global sensitivity analysis. The primer. John Wiley & Sons. [CrossRef]











| Scenario | GHP Flow [m³/s] |
Flow – Old Danube Riverbed [m³/s] |
Flow - Moson Danube [m³/s] |
Water Level - Komárno [m a.s.l.] |
| 1 | 990 | 205 | 40 | 104.88 |
| 2 | 2,780 | 254 | 40 | 107.15 |
| 3 | 4,700 | 420 | 40 | 108.92 |
| Scenario | Water Level - Medveďov [m a.s.l.] |
Water Level – Kližská Nemá [m a.s.l.] |
| 1 | 108.85 | 106.18 |
| 2 | 111.65 | 108.63 |
| 3 | 113.82 | 110.74 |
| Scenario | Water Level - Medveďov [m a.s.l.] |
Water Level – Kližská Nemá [m a.s.l.] | RMSE | MAE | R2 | ||
| Measured | Simulated | Measured | Simulated | ||||
| 1 | 108.85 | 108.80 | 106.18 | 106.23 | 0.074 | 0.064 | 0.998 |
| 2 | 111.65 | 111.68 | 108.63 | 108.64 | |||
| 3 | 113.82 | 113.69 | 110.74 | 110.64 | |||
|
Transport formula |
kb |
Q = 2,750 m³/s QS = 20.16 kg/s |
Q = 1,250 m³/s QS = 4.25 kg/s |
RMSE | MAE | R² |
| QS [kg/s] | QS [kg/s] | |||||
| Engelund and Hansen |
0.5 | 71.08 | 17.97 | 37.29 | 32.32 | -20.95 |
| 0.75 | 107.58 | 27 | 63.87 | 55.09 | -63.42 | |
| 1 | 218.11 | 54.07 | 144.33 | 123.88 | -327.95 | |
| 1.5 | 144.17 | 36.05 | 90.53 | 77.91 | -128.4 | |
| 2 | 292.45 | 72.08 | 198.42 | 170.06 | -620.66 | |
| Engelund and Fredsoe |
0.5 | 191.95 | 33.03 | 123.17 | 100.29 | -238.54 |
| 0.75 | 297.02 | 49.67 | 198.38 | 161.14 | -620.45 | |
| 1 | 675.49 | 99.28 | 468.23 | 375.18 | -3,460.86 | |
| 1.5 | 405.51 | 66.35 | 276 | 223.73 | -1,201.81 | |
| 2 | 962.12 | 131.5 | 672.12 | 534.61 | -7,132.07 | |
| Van Rijn | 0.75 0.5 |
39.25 25.87 |
5.16 3.43 |
13.52 4.08 |
10 3.26 |
-1.88 0.74 |
| 1 | 80.91 | 10.37 | 43.17 | 33.44 | -28.43 | |
| 1.5 | 52.99 | 6.89 | 23.29 | 17.74 | -7.56 | |
| 2 | 109.72 | 13.84 | 63.69 | 49.58 | -63.05 | |
|
Meyer-Peter Müller |
1 0.5 0.75 |
40.21 13.1 19.72 |
15.8 5.28 7.91 |
16.36 5.05 2.61 |
15.8 4.05 2.05 |
-3.23 0.6 0.89 |
| 1.5 | 26.44 | 10.54 | 6.28 | 6.28 | -3.38 | |
| 2 | 54.47 | 21.05 | 27.01 | 25.55 | -10.52 |
| GHP Scenario | Day 0 [m3] |
After 10 days [m3] |
Δ [m3] |
After 10 days (PI95%) [m3] |
| Run-of-river (24h – 2,500 m3/s) | 1,995 | 2,368 | 373 | 2,359 – 2,377 |
| Hydropeaking (4h – 5,000 m3/s, 20h – 2,000 m3/s) | 1,995 | 2,184 | 189 | 2,174 – 2,193 |
|
Distance from the fairway’s axis [m] |
Original Depth - Day 0 - [m] |
GHP Scenario - After 10 days - |
|||
|
Run-of-river (24h – 2,500 m3/s) |
Hydropeaking (4h – 5,000 m3/s, 20h – 2,000 m3/s) |
||||
| [m] | PI 95% [m] |
[m] | PI 95% [m] |
||
| -60 | 3.20 | 3.21 | 3.12 – 3.30 | 3.22 | 3.14 – 3.31 |
| -30 | 3.13 | 3.12 | 3.11 – 3.12 | 3.12 | 3.11 – 3.12 |
| 0 | 2.65 | 2.68 | 2.64 – 2.73 | 2.68 | 2.64 – 2.72 |
| +30 | 2.46 | 2.39 | 2.37 – 2.40 | 2.41 | 2.40 – 2.42 |
| +60 | 2.37 | 2.30 | 2.29 – 2.31 | 2.34 | 2.33 – 2.34 |
|
Distance from the fairway’s axis [m] |
GHP Scenario | ||
| Run-of-river (24h – 2,500 m3/s) | Hydropeaking (4h – 5,000 m3/s, 20h – 2,000 m3/s) | ||
| PI 95% [m] |
PI 95% [m] |
PI 95% [m] |
|
| -60 | -0.11 ~ 0.07 | -0.11 ~ 0.05 | 0.00 ~ -0.02 |
| -30 | 0.00 ~ 0.01 | 0.00 ~ 0.01 | 0.00 ~ 0.00 |
| 0 | -0.08 ~ 0.01 | -0.07 ~ 0.00 | 0.01 ~ -0.01 |
| +30 | 0.06 ~ 0.09 | 0.04 ~ 0.06 | -0.02 ~ -0.03 |
| +60 | 0.06 ~ 0.07 | 0.02 ~ 0.04 | -0.04 ~ -0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
