Submitted:
24 January 2026
Posted:
27 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Sample and Study Scope
2.2. Experimental Design and Control Setup
2.3. Measurement Procedures and Quality Control
2.4. Data Processing and Model Formulation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Prompt-Level Noise Leads to larger Output Variation After Alignment
3.2. Bias Amplification Appears Under Routine Rewording Rather Than Single Prompts
3.3. Safety Constraints and content Stability Show A Shared Trade-Off
3.4. Implications for Evaluation and Mitigation Under Alignment
4. Conclusions
References
- Melnik, A.; Ljubljanac, M.; Lu, C.; Yan, Q.; Ren, W.; Ritter, H. Video diffusion models: A survey. arXiv 2024, arXiv:2405.03150. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Y.; Shi, J.; Tong, L. Reinforcement Learning Based Multi-Stage Ad Sorting and Personalized Recommendation System Design. 2025. [Google Scholar]
- Ho, J.; Salimans, T.; Gritsenko, A.; Chan, W.; Norouzi, M.; Fleet, D. J. Video diffusion models. Advances in neural information processing systems 2022, 35, 8633–8646. [Google Scholar]
- Narumi, K.; Qin, F.; Liu, S.; Cheng, H. Y.; Gu, J.; Kawahara, Y.; Yao, L. Self-healing UI: Mechanically and electrically self-healing materials for sensing and actuation interfaces. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, 2019, October; pp. 293–306. [Google Scholar]
- Badrinath, A.; Agarwal, P.; Xu, J. Unified Preference Optimization: Language Model Alignment Beyond the Preference Frontier. arXiv 2024, arXiv:2405.17956. [Google Scholar]
- Tran, A. T.; Zeevi, T.; Payabvash, S. Strategies to improve the robustness and generalizability of deep learning segmentation and classification in neuroimaging. BioMedInformatics 2025, 5(2), 20. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Qiu, H.; Zhao, H.; Wan, K.; Li, J.; Gu, J.; Hu, J. From Preferences to Prejudice: The Role of Alignment Tuning in Shaping Social Bias in Video Diffusion Models. arXiv 2025, arXiv:2510.17247. [Google Scholar] [CrossRef]
- Friedrich, F.; Brack, M.; Struppek, L.; Hintersdorf, D.; Schramowski, P.; Luccioni, S.; Kersting, K. Auditing and instructing text-to-image generation models on fairness. AI and Ethics 2025, 5(3), 2103–2123. [Google Scholar] [CrossRef]
- Wu, Q.; Shao, Y.; Wang, J.; Sun, X. Learning Optimal Multimodal Information Bottleneck Representations. arXiv 2025, arXiv:2505.19996. [Google Scholar] [CrossRef]
- Dominici, G.; Barbiero, P.; Giannini, F.; Gjoreski, M.; Marra, G.; Langheinrich, M. Counterfactual concept bottleneck models. arXiv 2024, arXiv:2402.01408. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Kasat, A.; Dubey, S.; Karthikeyan, R.; Sood, D.; Jain, V.; Das, A. AMBEDKAR-A Multi-level Bias Elimination through a Decoding Approach with Knowledge Augmentation for Robust Constitutional Alignment of Language Models. arXiv 2025, arXiv:2509.02133. [Google Scholar]
- Tan, L.; Peng, Z.; Song, Y.; Liu, X.; Jiang, H.; Liu, S.; Xiang, Z. Unsupervised domain adaptation method based on relative entropy regularization and measure propagation. Entropy 2025, 27(4), 426. [Google Scholar] [CrossRef]
- Palmini, M. T. D. R.; Cetinic, E. Exploring Language Patterns of Prompts in Text-to-Image Generation and Their Impact on Visual Diversity. arXiv 2025, arXiv:2504.14125. [Google Scholar]
- Sheu, J. B.; Gao, X. Q. Alliance or no alliance—Bargaining power in competing reverse supply chains. European Journal of Operational Research 2014, 233(2), 313–325. [Google Scholar] [CrossRef]
- Sridhar, D.; Peri, A.; Rachala, R.; Vasconcelos, N. Adapting diffusion models for improved prompt compliance and controllable image synthesis. Advances in Neural Information Processing Systems 2024, 37, 6979–7010. [Google Scholar]
- Bai, W.; Wu, K.; Wu, Q.; Lu, K. AFLGopher: Accelerating Directed Fuzzing via Feasibility-Aware Guidance. arXiv 2025, arXiv:2511.10828. [Google Scholar] [CrossRef]
- Pingua, B.; Murmu, D.; Kandpal, M.; Rautaray, J.; Mishra, P.; Barik, R. K.; Saikia, M. J. Mitigating adversarial manipulation in LLMs: a prompt-based approach to counter Jailbreak attacks (Prompt-G). PeerJ Computer Science 2024, 10, e2374. [Google Scholar] [CrossRef] [PubMed]
- Du, Y. Research on Deep Learning Models for Forecasting Cross-Border Trade Demand Driven by Multi-Source Time-Series Data. Journal of Science, Innovation & Social Impact 2025, 1(2), 63–70. [Google Scholar]
- Somvanshi, S.; Islam, M. M.; Rafe, A.; Tusti, A. G.; Chakraborty, A.; Baitullah, A.; Das, S. Bridging the Black Box: A Survey on Mechanistic Interpretability in AI. Available at SSRN 5345552. 2025. [Google Scholar] [CrossRef]
- Mao, Y.; Ma, X.; Li, J. Research on API Security Gateway and Data Access Control Model for Multi-Tenant Full-Stack Systems. 2025. [Google Scholar]
- Simkute, A.; Tankelevitch, L.; Kewenig, V.; Scott, A. E.; Sellen, A.; Rintel, S. Ironies of generative AI: understanding and mitigating productivity loss in Human-AI interaction. International Journal of Human–Computer Interaction 2025, 41(5), 2898–2919. [Google Scholar] [CrossRef]
- Mao, Y.; Ma, X.; Li, J. Research on Web System Anomaly Detection and Intelligent Operations Based on Log Modeling and Self-Supervised Learning. 2025. [Google Scholar] [CrossRef]
- Vice, J.; Akhtar, N.; Shah, M.; Hartley, R.; Mian, A. S. Safety Without Semantic Disruptions: Editing-free Safe Image Generation via Context-preserving Dual Latent Reconstruction. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2025; pp. 2306–2316. [Google Scholar]
- Liu, S.; Feng, H.; Liu, X. A Study on the Mechanism of Generative Design Tools' Impact on Visual Language Reconstruction: An Interactive Analysis of Semantic Mapping and User Cognition; Authorea Preprints, 2025. [Google Scholar]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).