Submitted:
24 January 2026
Posted:
26 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Ethical Statements
2.2. Materials and Experimental Drugs
2.3. Study Design
2.4. Measurement of Disease Activity Index
2.5. Weighing of Organs
2.6. Histopathological Examination of the Colon
2.7. Analysis of Inflammation-Related Cytokines and Proteins
2.8. Analysis of Gut Microbiota
2.9. Statistical Analysis
3. Results
3.1. Body Weight, Food Intake, Water Consumption, and Food Efficiency in Mice
3.2. DAI
3.3. Weights of Liver, Kidney, and Spleen
3.4. Weights of Cecum, Cecal Wall, and Cecal Contents
3.5. Colon Length and Weight
3.6. Histopathological Evaluation of Colon
3.7. Analysis of Inflammatory Cytokines
3.8. Expression of Inflammation-Related Proteins
3.9. Gut Microbiota
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| MDPI | Multidisciplinary Digital Publishing Institute |
| IBD | Inflammatory bowel disease |
| DSS | Dextran sulfate sodium |
| DAI | Disease activity index |
| CD | Crohn’s disease |
| UC | Ulcerative colitis |
| TNF-α | Tumor necrosis factor-α |
| IL | Interleukin |
| LPS | Lipopolysaccharide |
| H&E stain | Hematoxylin and eosin stain |
| COX-2 | Cyclooxygenase-2 |
| NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| IkBα | Nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor alpha |
| SDs | Standard deviations score |
| SAS | Statistical Analysis System |
| IECs | Intestinal epithelial cells |
| ICAM-1 | Intercellular adhesion molecule -1 |
| CRC | Colorectal cancer |
| HDAC1 | Histone deacetylase 1 |
| PUFAs | Polyunsaturated fatty acids |
| LPS | Lipopolysaccharide |
| TNBS | Trinitrobenzene sulfonic acid |
References
- Geboes, K.; Colombel, J.-F.; Greenstein, A.; Jewell, D.P.; Sandborn, W.J.; Vatn, M.H.; Warren, B.; Riddell, R.H. Indeterminate colitis: A review of the concept — What’s in a name? Inflammatory Bowel Diseases 2008, 14(6), 850–857. [Google Scholar] [CrossRef]
- Gyires, K.; Tóth É, V.; Zádori, S.Z. Gut inflammation: current update on pathophysiology, molecular mechanism and pharmacological treatment modalities. Curr Pharm Des 2014, 20(7), 1063–1081. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Escher, J.; Hébuterne, X.; Kłęk, S.; Krznaric, Z.; Schneider, S.; Shamir, R.; Stardelova, K.; Wierdsma, N.; Wiskin, A.E. ESPEN practical guideline: Clinical Nutrition in inflammatory bowel disease. Clin Nutr 2020, 39(3), 632–653. [Google Scholar] [CrossRef] [PubMed]
- Yen, H.H.; Weng, M.T.; Tung, C.C.; Wang, Y.T.; Chang, Y.T.; Chang, C.H.; Shieh, M.J.; Wong, J.M.; Wei, S.C. Epidemiological trend in inflammatory bowel disease in Taiwan from 2001 to 2015: a nationwide populationbased study. Intest Res 2019, 17(1), 54–62. [Google Scholar] [CrossRef] [PubMed]
- Dahlhamer, J.M.; Zammitti, E.P.; Ward, B.W.; Wheaton, A.G.; Croft, J.B. Prevalence of Inflammatory Bowel Disease Among Adults Aged ≥18 Years — United States, 2015. Morbidity and Mortality Weekly Report 2016, 65, 1166–1169. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-J.; Lin, C.-Y.; Le, P.-H.; Kuo, Y.-W.; Hsu, C.-M.; Lai, M.-W.; Lin, W.-R.; Chang, M.-L.; Su, M.-Y.; Chiu, C.-T. Temporal Trends of Inflammatory Bowel Diseases in Taiwan from 2016 to 2020: A Population-Based Study. Digestive Diseases and Sciences 2024, 1–8. [Google Scholar]
- Chiba, M.; Nakane, K.; Komatsu, M. Westernized diet is the most ubiquitous environmental factor in inflammatory bowel disease. The Permanente Journal 2019, 23. [Google Scholar] [CrossRef]
- Lo, C.-H.; Khandpur, N.; Rossato, S.L.; Lochhead, P.; Lopes, E.W.; Burke, K.E.; Richter, J.M.; Song, M.; Ardisson Korat, A.V.; Sun, Q.; et al. Ultra-processed Foods and Risk of Crohn’s Disease and Ulcerative Colitis: A Prospective Cohort Study. Clinical Gastroenterology and Hepatology 2022, 20(6), e1323–e1337. [Google Scholar] [CrossRef]
- Chen, J.; Wellens, J.; Kalla, R.; Fu, T.; Deng, M.; Zhang, H.; Yuan, S.; Wang, X.; Theodoratou, E.; Li, X. Intake of ultra-processed foods is associated with an increased risk of Crohn’s disease: a cross-sectional and prospective analysis of 187 154 participants in the UK Biobank. Journal of Crohn’s and Colitis 2023, 17(4), 535–552. [Google Scholar] [CrossRef]
- Panaccione, R.; Rutgeerts, P.; Sandborn, W.J.; Feagan, B.; Schreiber, S.; Ghosh, S. Review article: treatment algorithms to maximize remission and minimize corticosteroid dependence in patients with inflammatory bowel disease. Aliment Pharmacol Ther 2008, 28, 674–688. [Google Scholar] [CrossRef]
- Torres, J.; Chaparro, M.; Julsgaard, M.; Katsanos, K.; Zelinkova, Z.; Agrawal, M.; Ardizzone, S.; Campmans-Kuijpers, M.; Dragoni, G.; Ferrante, M.; et al. European Crohn’s and Colitis Guidelines on Sexuality, Fertility, Pregnancy, and Lactation. Journal of Crohn’s and Colitis 2022, 17(1), 1–27. [Google Scholar] [CrossRef] [PubMed]
- Mak, W.Y.; Zhao, M.; Ng, S.C.; Burisch, J. The epidemiology of inflammatory bowel disease: East meets west. Journal of Gastroenterology and Hepatology 2020, 35(3), 380–389. [Google Scholar] [CrossRef]
- Yelencich, E.; Truong, E.; Widaman, A.M.; Pignotti, G.; Yang, L.; Jeon, Y.; Weber, A.T.; Shah, R.; Smith, J.; Sauk, J.S.; et al. Avoidant Restrictive Food Intake Disorder Prevalent Among Patients With Inflammatory Bowel Disease. Clinical Gastroenterology and Hepatology 2022, 20(6), 1282–1289.e1281. [Google Scholar] [CrossRef] [PubMed]
- Cannataro, R.; Carbone, L.; Petro, J.L.; Cione, E.; Vargas, S.; Angulo, H.; Forero, D.A.; Odriozola-Martínez, A.; Kreider, R.B.; Bonilla, D.A. Sarcopenia: Etiology, Nutritional Approaches, and miRNAs. International Journal of Molecular Sciences 2021, 22(18), 9724. [Google Scholar] [CrossRef] [PubMed]
- Paddon-Jones, D.; Rasmussen, B.B. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care 2009, 12(1), 86–90. [Google Scholar] [CrossRef]
- Lo, C.H.; Lochhead, P.; Khalili, H.; Song, M.; Tabung, F.K.; Burke, K.E.; Richter, J.M.; Giovannucci, E.L.; Chan, A.T.; Ananthakrishnan, A.N. Dietary Inflammatory Potential and Risk of Crohn’s Disease and Ulcerative Colitis. Gastroenterology 2020, 159(3), 873–883.e871. [Google Scholar] [CrossRef]
- Tsai, P.J.; Chen, Y.S.; Sheu, C.H.; Chen, C.Y. Effect of nanogrinding on the pigment and bioactivity of Djulis ( Chenopodium formosanum Koidz.). J Agric Food Chem 2011, 59(5), 1814–1820. [Google Scholar] [CrossRef]
- Chyau, C.-C.; Chu, C.-C.; Chen, S.-Y.; Duh, P.-D. The Inhibitory Effects of Djulis (Chenopodium formosanum) and Its Bioactive Compounds on Adipogenesis in 3T3-L1 Adipocytes. Molecules 2018, 23(7), 1780. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.-J.; Sheu, C.-H.; Wu, P.-H.; Sun, Y.-F. Thermal and pH Stability of Betacyanin Pigment of Djulis (Chenopodium formosanum) in Taiwan and Their Relation to Antioxidant Activity. Journal of Agricultural and Food Chemistry 2010, 58(2), 1020–1025. [Google Scholar] [CrossRef]
- Tsai, T.-Y.; Lin, R.-J.; Liu, C.; Tseng, Y.-P.; Chan, L.-P.; Liang, C.-H. Djulis supplementation against oxidative stress and ultraviolet radiation-induced cell damage: The influence of antioxidant status and aging of skin in healthy subjects. Journal of Cosmetic Dermatology 2022, 21(7), 2945–2953. [Google Scholar] [CrossRef]
- Chuang, K.J.; Chen, Z.J.; Cheng, C.L.; Hong, G.B. Investigation of the Antioxidant Capacity, Insecticidal Ability and Oxidation Stability of Chenopodium formosanum Seed Extract. Int J Mol Sci 2018, 19(9). [Google Scholar] [CrossRef]
- Hong, Y.-H.; Huang, Y.-L.; Liu, Y.-C.; Tsai, P.-J. Djulis (Chenopodium formosanum Koidz.) Water Extract and Its Bioactive Components Ameliorate Dermal Damage in UVB-Irradiated Skin Models. BioMed Research International 2016, 2016, 7368797. [Google Scholar] [CrossRef]
- Martinez, R.M.; Longhi-Balbinot, D.T.; Zarpelon, A.C.; Staurengo-Ferrari, L.; Baracat, M.M.; Georgetti, S.R.; Sassonia, R.C.; Verri, W.A.; Casagrande, R. Anti-inflammatory activity of betalain-rich dye of Beta vulgaris: effect on edema, leukocyte recruitment, superoxide anion and cytokine production. Archives of Pharmacal Research 2015, 38(4), 494–504. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.A.; Ke, B.J.; Cheng, C.S.; Wang, J.J.; Wei, B.L.; Lee, C.L. Red Quinoa Bran Extracts Protects against Carbon Tetrachloride-Induced Liver Injury and Fibrosis in Mice via Activation of Antioxidative Enzyme Systems and Blocking TGF-β1 Pathway. Nutrients 2019, 11(2). [Google Scholar] [CrossRef]
- Tung, Y.T.; Zeng, J.L.; Ho, S.T.; Xu, J.W.; Li, S.; Wu, J.H. Anti-NAFLD Effect of Djulis Hull and Its Major Compound, Rutin, in Mice with High-Fat Diet (HFD)-Induced Obesity. Antioxidants (Basel) 2021, 10(11). [Google Scholar] [CrossRef] [PubMed]
- Lin, T.A.; Ke, B.J.; Cheng, S.C.; Lee, C.L. Red Quinoa Bran Extract Prevented Alcoholic Fatty Liver Disease via Increasing Antioxidative System and Repressing Fatty Acid Synthesis Factors in Mice Fed Alcohol Liquid Diet. Molecules 2021, 26(22). [Google Scholar] [CrossRef]
- Chyau, C.C.; Chu, C.C.; Chen, S.Y.; Duh, P.D. The Inhibitory Effects of Djulis (Chenopodium formosanum) and Its Bioactive Compounds on Adipogenesis in 3T3-L1 Adipocytes. Molecules 2018, 23(7). [Google Scholar] [CrossRef]
- Lin, Y.Y.; Lin, Y.K.; Lin, Y.H.; Chiang, C.F. Novel compounds of Djulis (Chenopodium formosanum Koidz) increases collagen, antioxidants, inhibits adipogenesis. Nat Prod Res 2023, 1–10. [Google Scholar] [CrossRef]
- Laus, M.N.; Gagliardi, A.; Soccio, M.; Flagella, Z.; Pastore, D. Antioxidant activity of free and bound compounds in quinoa (Chenopodium quinoa Willd.) seeds in comparison with durum wheat and emmer. J Food Sci 2012, 77(11), C1150–1155. [Google Scholar] [CrossRef]
- Yao, Y.; Yang, X.; Shi, Z.; Ren, G. Anti-Inflammatory Activity of Saponins from Quinoa (Chenopodium quinoa Willd.) Seeds in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages Cells. Journal of Food Science 2014, 79(5), H1018–H1023. [Google Scholar] [CrossRef]
- Ed Nignpense, B.; Francis, N.; Blanchard, C.; Santhakumar, A.B. Bioaccessibility and Bioactivity of Cereal Polyphenols: A Review. Foods 2021, 10, 1595. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Qiu, B.; Fan, S.; Ding, H.; Liu, Z. Quinoa whole grain diet compromises the changes of gut microbiota and colonic colitis induced by dextran Sulfate sodium in C57BL/6 mice. Scientific Reports 2018, 8(1), 14916. [Google Scholar] [CrossRef]
- Xie, G.-R. Analysis of Phytochemicals and Fingerprintin Chenopodium formosanum (Djulis). 2017. [Google Scholar]
- Lee, C.-W.; Chen, H.-J.; Xie, G.-R.; Shih, C.-K. Djulis (Chenopodium Formosanum) Prevents Colon Carcinogenesis via Regulating Antioxidative and Apoptotic Pathways in Rats. Nutrients 2019, 11(9), 2168. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Chen, H.J.; Chien, Y.H.; Hsia, S.M.; Chen, J.H.; Shih, C.K. Synbiotic Combination of Djulis (Chenopodium formosanum) and Lactobacillus acidophilus Inhibits Colon Carcinogenesis in Rats. Nutrients 2019, 12(1). [Google Scholar] [CrossRef]
- Huang, H.W.; Cheng, M.C.; Chen, B.Y.; Wang, C.Y. Effects of high pressure extraction on the extraction yield, phenolic compounds, antioxidant and anti-tyrosinase activity of Djulis hull. J Food Sci Technol 2019, 56(9), 4016–4024. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.-P.; Hsu, H.-Y.; Huang, D.-W.; Hsu, H.-H.; Lin, J.-T.; Shih, C.-K.; Chiang, W. Ethyl Acetate Fraction of Adlay Bran Ethanolic Extract Inhibits Oncogene Expression and Suppresses DMH-Induced Preneoplastic Lesions of the Colon in F344 Rats through an Anti-inflammatory Pathway. Journal of Agricultural and Food Chemistry 2010, 58(13), 7616–7623. [Google Scholar] [CrossRef]
- Cochran, K.E.; Lamson, N.G.; Whitehead, K.A. Expanding the utility of the dextran sulfate sodium (DSS) mouse model to induce a clinically relevant loss of intestinal barrier function. PeerJ 2020, 8, e8681. [Google Scholar] [CrossRef]
- Chassaing, B.; Aitken, J.D.; Malleshappa, M.; Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 2014, 104, 15.25.11–15.25.14. [Google Scholar] [CrossRef]
- Eichele, D.D.; Kharbanda, K.K. Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol 2017, 23(33), 6016–6029. [Google Scholar] [CrossRef]
- Chassaing, B.; Aitken, J.D.; Malleshappa, M.; Vijay-Kumar, M. Dextran Sulfate Sodium (DSS)-Induced Colitis in Mice. Curr Protoc Immunol 2014, 104(1), 15.25.11–15.25.14. [Google Scholar] [CrossRef]
- Laroui, H.; Ingersoll, S.A.; Liu, H.C.; Baker, M.T.; Ayyadurai, S.; Charania, M.A.; Laroui, F.; Yan, Y.; Sitaraman, S.V.; Merlin, D. Dextran sodium sulfate (DSS) induces colitis in mice by forming nano-lipocomplexes with medium-chain-length fatty acids in the colon. PLoS One 2012, 7(3), e32084. [Google Scholar] [CrossRef]
- Okayasu, I.; Hatakeyama, S.; Yamada, M.; Ohkusa, T.; Inagaki, Y.; Nakaya, R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 1990, 98(3), 694–702. [Google Scholar] [CrossRef]
- Wirtz, S.; Popp, V.; Kindermann, M.; Gerlach, K.; Weigmann, B.; Fichtner-Feigl, S.; Neurath, M.F. Chemically induced mouse models of acute and chronic intestinal inflammation. Nature Protocols 2017, 12(7), 1295–1309. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yu, K.; Zhu, F.; Gorczynski, R. Over-Expression of CD200 Protects Mice from Dextran Sodium Sulfate Induced Colitis. PLoS One 2016, 11(2), e0146681. [Google Scholar] [CrossRef] [PubMed]
- Cooper, H.S.; Murthy, S.N.; Shah, R.S.; Sedergran, D.J. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 1993, 69(2), 238–249. [Google Scholar] [PubMed]
- Xiao, H.-T.; Lin, C.-Y.; Ho, D.H.H.; Peng, J.; Chen, Y.; Tsang, S.-W.; Wong, M.; Zhang, X.-J.; Zhang, M.; Bian, Z.-X. Inhibitory Effect of the Gallotannin Corilagin on Dextran Sulfate Sodium-Induced Murine Ulcerative Colitis. Journal of Natural Products 2013, 76(11), 2120–2125. [Google Scholar] [CrossRef]
- Au - Kim, J.J.; Au - Shajib, M.S.; Au - Manocha, M.M.; Au - Khan, W.I. Investigating Intestinal Inflammation in DSS-induced Model of IBD. JoVE 2012, 60, e3678. [Google Scholar] [CrossRef]
- Bibi, S.; Du, M.; Zhu, M.-J. Dietary Red Raspberry Reduces Colorectal Inflammation and Carcinogenic Risk in Mice with Dextran Sulfate Sodium–Induced Colitis. The Journal of Nutrition 2018, 148(5), 667–674. [Google Scholar] [CrossRef]
- Surh, Y.-J.; Chun, K.-S.; Cha, H.-H.; Han, S.S.; Keum, Y.-S.; Park, K.-K.; Lee, S.S. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2001, 480-481, 243–268. [Google Scholar] [CrossRef]
- Honda, K.; Littman, D.R. The microbiome in infectious disease and inflammation. Annu Rev Immunol 2012, 30, 759–795. [Google Scholar] [CrossRef]
- Andoh, A.; Sakata, S.; Koizumi, Y.; Mitsuyama, K.; Fujiyama, Y.; Benno, Y. Terminal restriction fragment length polymorphism analysis of the diversity of fecal microbiota in patients with ulcerative colitis. Inflammatory Bowel Diseases 2007, 13(8), 955–962. [Google Scholar] [CrossRef]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science 2005, 308(5728), 1635–1638. [Google Scholar] [CrossRef]
- Chen, H.; Xia, Y.; Zhu, S.; Yang, J.; Yao, J.; Di, J.; Liang, Y.; Gao, R.; Wu, W.; Yang, Y.; et al. Lactobacillus plantarum LP-Onlly alters the gut flora and attenuates colitis by inducing microbiome alteration in interleukin-10 knockout mice. Mol Med Rep 2017, 16(5), 5979–5985. [Google Scholar] [CrossRef] [PubMed]
- Meng, M.J.; Huang, J.; Tsou, Y.K.; Pan, Y.B.; Chiu, C.T.; Lin, Y.T.; Le, P.H. Diet and the risk of inflammatory bowel disease: A retrospective cohort study in Taiwan. Journal of the Formosan Medical Association 2024. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.S.; Mann, M.; DuBois, R.N. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 1999, 18(55), 7908–7916. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-C.; Hsu, W.-F.; Chang, J.-S.; Shih, C.-K. Combination of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis Shows a Stronger Anti-Inflammatory Effect than Individual Strains in HT-29 Cells. Nutrients 2019, 11(5), 969. [Google Scholar] [CrossRef]
- Elewaut, D.; DiDonato, J.A.; Mogg Kim, J.; Truong, F.; Eckmann, L.; Kagnoff, M.F. NF-κB is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria. The Journal of Immunology 1999, 163(3), 1457–1466. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, H.M.; Yang, K.M.; Kim, S.-A.; Kim, S.-K.; An, M.J.; Park, J.J.; Lee, S.K.; Kim, T.I.; Kim, W.H.; et al. Bifidobacterium lactis inhibits NF-κB in intestinal epithelial cells and prevents acute colitis and colitis-associated colon cancer in mice. Inflammatory Bowel Diseases 2010, 16(9), 1514–1525. [Google Scholar] [CrossRef]
- Riedel, C.U.; Foata, F.; Philippe, D.; Adolfsson, O.; Eikmanns, B.J.; Blum, S. Anti-inflammatory effects of bifidobacteria by inhibition of LPS-induced NF-κB activation. World journal of gastroenterology: WJG 2006, 12(23), 3729. [Google Scholar] [CrossRef]
- Fan, X. Study on bioactivities of quinoa-derived peptides in alleviating intestinal diseases and their physicochemical properties; Universite de Liege (Belgium), 2023. [Google Scholar]
- Huang, Y.-C.; Tung, C.-L.; Ho, S.-T.; Li, W.-S.; Li, S.; Tung, Y.-T.; Wu, J.-H. Nutraceutical Potential of Djulis (Chenopodium formosanum) Hull: Phytochemicals, Antioxidant Activity, and Liver Protection. Antioxidants 2024, 13(6), 721. [Google Scholar] [CrossRef]
- Malek Mahdavi, A.; Javadivala, Z.; Khalili, Y.; Khalili, M. Effects of Quinoa (Chenopodium quinoa) on inflammatory mediators: a systematic review of preclinical studies. Inflammopharmacology 2023, 31(1), 241–251. [Google Scholar] [CrossRef]
- Ker, Y.B.; Wu, H.L.; Chen, K.C.; Peng, R.Y. Nutrient composition of Chenopodium formosanum Koidz. bran: Fractionation and bioactivity of its soluble active polysaccharides. PeerJ 2022, 10, e13459. [Google Scholar] [CrossRef]
- Ananthakrishnan, A.N.; Khalili, H.; Konijeti, G.G.; Higuchi, L.M.; Silva, P. d.; Fuchs, C.S.; Willett, W.C.; Richter, J.M.; Chan, A.T. Long-term intake of dietary fat and risk of ulcerative colitis and Crohn’s disease. Gut 2014, 63(5), 776–784. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Lin, Y.K.; Lin, Y.H.; Chiang, C.F. Novel compounds of Djulis (Chenopodium formosanum Koidz) increases collagen, antioxidants, inhibits adipogenesis. Nat Prod Res 2024, 38(16), 2763–2772. [Google Scholar] [CrossRef] [PubMed]
- Candelli, M.; Franza, L.; Pignataro, G.; Ojetti, V.; Covino, M.; Piccioni, A.; Gasbarrini, A.; Franceschi, F. Interaction between Lipopolysaccharide and Gut Microbiota in Inflammatory Bowel Diseases. International Journal of Molecular Sciences 2021, 22(12), 6242. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, E.; Margonis, G.A.; Angelou, A.; Pikouli, A.; Argiri, P.; Karavokyros, I.; Papalois, A.; Pikoulis, E. The TNBS-induced colitis animal model: An overview. Ann Med Surg (Lond) 2016, 11, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Zhu, P.; Shi, Y.; Xiang, W.; Ge, S.; Zhang, Z.; Zuo, L. Protective effect of procyanidin B2 on intestinal barrier and against enteritis in a mouse model of trinitrobenzene sulphonic acid-induced colitis. Nan Fang Yi Ke Da Xue Xue Bao 2019, 39(7), 778–783. [Google Scholar] [CrossRef]
- TuzzYing, S.T.S.; RongRong, C.R.C.; JiunnWang, L.J.L.; ChenI, C.C.C.; ChienLin, C.C.C.; ChiuYuan, C.C.C. Safety assessment of whole and hulled Djulis (Chenopodium formosanum Koidz); publisher location: Taipei.
- publisher name: Agricultural Chemical Society of Taiwan and Taiwan Association for Food Science and Technology.
- Morgan, X.C.; Tickle, T.L.; Sokol, H.; Gevers, D.; Devaney, K.L.; Ward, D.V.; Reyes, J.A.; Shah, S.A.; LeLeiko, N.; Snapper, S.B. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome biology 2012, 13, 1–18. [Google Scholar] [CrossRef]
- Dou, X.; Gao, N.; Yan, D.; Shan, A. Sodium Butyrate Alleviates Mouse Colitis by Regulating Gut Microbiota Dysbiosis. Animals 2020, 10(7), 1154. [Google Scholar] [CrossRef]
- Zhou, Q.; Ma, L.; Zhao, W.; Zhao, W.; Han, X.; Niu, J.; Li, R.; Zhao, C. Flaxseed oil alleviates dextran sulphate sodium-induced ulcerative colitis in rats. Journal of Functional Foods 2020, 64, 103602. [Google Scholar] [CrossRef]
- Yao, S.; Zhao, Z.; Wang, W.; Liu, X. Bifidobacterium longum: protection against inflammatory bowel disease. Journal of immunology research 2021, 2021(1), 8030297. [Google Scholar] [CrossRef]
- Ishikawa, H.; Matsumoto, S.; Ohashi, Y.; Imaoka, A.; Setoyama, H.; Umesaki, Y.; Tanaka, R.; Otani, T. Beneficial effects of probiotic bifidobacterium and galacto-oligosaccharide in patients with ulcerative colitis: a randomized controlled study. Digestion 1955, 84(2), 128–133. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, X.; Zhang, C.; Deng, J.; Xiao, H.; Rao, Y. Lactiplantibacillus biofilm and planktonic cells ameliorate ulcerative colitis in mice via immunoregulatory activity, gut metabolism and microbiota modulation. Food & Function 2023, 14(20), 9181–9193. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.-M.; Huang, H.-L.; Xu, J.; He, J.; Zhao, C.; Peng, Y.; Zhao, H.-L.; Huang, W.-Q.; Cao, C.-Y.; Zhou, Y.-J. Cross-talk between butyric acid and gut microbiota in ulcerative colitis following fecal microbiota transplantation. Frontiers in microbiology 2021, 12, 658292. [Google Scholar] [CrossRef] [PubMed]
















| Group | Oral gavage | Treatment |
|---|---|---|
| B | None | Normal drinking water |
| DSS | None | 2% DSS for 5 days and normal drinking water for 5 days (3 cycles) |
| LD | 5% whole seed powder of djulis | |
| MD | 10% whole seed powder of djulis | |
| HD | 15% whole seed powder of djulis |
| Score | Weight loss | Stool consistency | Fecal occult blood |
|---|---|---|---|
| 0 | None | Normal | Normal |
| 1 | <5% | ||
| 2 | 5%-10% | Loose stools | Slight bleeding |
| 3 | 10%-15% | ||
| 4 | >15% | Diarrhea | Gross bleeding |
| Score | Crypt damage | Severity of inflammation | Depth of tissue damage |
|---|---|---|---|
| 0 | None | None | None |
| 1 | 1/3 Basal damage | Mucosal infiltration | Mucosal damage |
| 2 | 2/3 Basal damage | Mucosal and submucosal infiltration | Mucosal and submucosal damage |
| 3 | Only surface epithelium intact | Transmural infiltration | Transmural damage |
| 4 | Complete loss of crypt and epithelium | ||
| Group[3] | Initial body weight (g) | Final body weight (g) | Weight gain (g/d) | Water consumption(g/d) | Food intake (g/d) | Food efficiency[4] (%) |
| B | 23.6 ± 1.7 | 27.7 ± 1.6a | 0.14 ± 0.02a | 5.7 ± 1.0a | 5.1 ± 0.7a | 2.7 ± 0.5a |
| C | 23.7 ± 1.4 | 25.0 ± 2.0b | 0.04 ± 0.07b | 4.7 ± 0.6b | 4.7 ± 0.5ab | 0.9 ± 1.4b |
| L | 23.1 ± 1.4 | 25.2 ± 2.2b | 0.07 ± 0.05b | 4.0 ± 0.4b | 4.3 ± 0.5bc | 1.6 ± 1.2ab |
| M | 23.4 ± 1.8 | 24.9 ± 2.1b | 0.05 ± 0.02b | 4.4 ± 0.8b | 4.0 ± 0.6c | 1.3 ± 0.5b |
| H | 23.9±1.1 | 25.3 ± 1.9ab | 0.05 ± 0.04b | 4.6 ± 0.5b | 3.9 ± 0.3c | 1.2 ± 1.1b |
| Comparison | R.Statistic.Value | P value3 | N.Perm |
| B vs C | 0.636 | .009 | 10 000 |
| B vs H | 0.784 | .008 | 10 000 |
| C vs H | 0.524 | .008 | 10 000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
