Submitted:
23 January 2026
Posted:
26 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
- We define the CAD problem and compare it to related settings (Section 2).
- We discuss CAD learning scenarios and clarify the assumptions that most affect method choices (Section 3).
- We survey CAD algorithms and methods, emphasizing design trade-offs and recurring patterns (Section 4).
- We review CAD applications across data modalities and highlight domain-specific constraints (Section 5).
- We analyze evaluation metrics that capture both detection quality and continual dynamics (Section 6).
- We summarize open challenges and provide a roadmap toward robust and effective CAD systems (Section 7).

2. Background and Problem Definition
2.1. Related Settings and Boundaries
AD, OOD, and Open-Set Detection
Concept Drift and Change-Point Detection
Periodic Retraining
Online Learning
2.2. Problem Definition
3. CAD Learning Scenarios

3.1. Modality-Driven Scenarios
Images
Videos
Tabular and Time Series
3.2. Recommendations for Scenario Specification
4. CAD Algorithms & Methods
4.1. Replay
4.2. Regularization and Knowledge Distillation
4.3. Architectural Strategies
4.4. Human-in-the-Loop
4.5. Pretrained Models and Prompts
4.6. Contrastive Learning
4.7. Change and Drift Detection
4.8. Federated CAD
5. Application and Domain Trends
- Visual Inspection for Manufacturing
- Cybersecurity Applications
- Sensor-Based Industrial Monitoring
- Video Analysis
6. CAD Evaluation Metrics
7. Open Challenges and Roadmap
- CAD-Specific Datasets and Benchmark
- CAD for Streaming Data
- Compute, Memory, and Update Budgets
- Experimental Design, Reproducibility, and Fair Comparison
- Robustness under Feedback and Contamination
- Representations and Objective Conflict
- Humans and Operations
8. Conclusions
Acknowledgments
References
- Lu, T.; Wang, L.; Zhao, X. Review of anomaly detection algorithms for data streams. Applied Sciences 2023, 13, 6353. [Google Scholar] [CrossRef]
- Liu, J.; Wu, K.; Nie, Q.; Chen, Y.; et al. Unsupervised continual anomaly detection with contrastively-learned prompt. Proceedings of the Proceedings of the AAAI conference on artificial intelligence 2024, Vol. 38, 3639–3647. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Su, H.; Zhu, J. A comprehensive survey of continual learning: Theory, method and application. IEEE transactions on pattern analysis and machine intelligence 2024, 46, 5362–5383. [Google Scholar] [CrossRef]
- Faber, K.; Corizzo, R.; Sniezynski, B.; Japkowicz, N. Lifelong continual learning for anomaly detection: New challenges, perspectives, and insights. IEEE Access 2024, 12, 41364–41380. [Google Scholar] [CrossRef]
- Roady, R.; Hayes, T.L.; Kemker, R.; Gonzales, A.; Kanan, C. Are open set classification methods effective on large-scale datasets? PLOS ONE 2020, 15, e0238302. [Google Scholar] [CrossRef] [PubMed]
- Faber, K.; Corizzo, R.; Sniezynski, B.; Japkowicz, N. VLAD: Task-agnostic VAE-based lifelong anomaly detection. Neural Networks 2023, 165, 248–273. [Google Scholar] [CrossRef] [PubMed]
- Harun, M.Y.; Gallardo, J.; Hayes, T.L.; Kemker, R.; Kanan, C. SIESTA: Efficient Online Continual Learning with Sleep. In Transactions on Machine Learning Research; 2023.
- González, G.G.; Casas, P.; Fernández, A. Fake it till you detect it: Continual anomaly detection in multivariate time-series using generative AI. In Proceedings of the 2023 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW); 2023, IEEE; pp. 558–566.
- Faber, K.; Corizzo, R.; Sniezynski, B.; Japkowicz, N. Active lifelong anomaly detection with experience replay. In Proceedings of the 2022 IEEE 9th international conference on data science and advanced analytics (DSAA), 2022; IEEE; pp. 1–10. [Google Scholar]
- Lebichot, B.; Siblini, W.; Paldino, G.M.; Le Borgne, Y.A.; Oblé, F.; Bontempi, G. Assessment of catastrophic forgetting in continual credit card fraud detection. Expert Systems with Applications 2024, 249, 123445. [Google Scholar] [CrossRef]
- Benameur, R.; Dahane, A.; Souihi, S.; Mellouk, A. A Robust and Scalable Federated Continual Learning Framework for Adaptive DDoS Detection in Heterogeneous IoT Environments. Proceedings of the ICC 2025-IEEE International Conference on Communications. IEEE 2025, 3063–3068. [Google Scholar]
- Guo, C.; Li, X.; Cheng, J.; Yang, S.; Gong, H. Continual Learning for Intrusion Detection Under Evolving Network Threats. Future Internet 2025, 17, 456. [Google Scholar] [CrossRef]
- Cai, Y.; He, X.; Tong, A.; Bai, X. Dynamic Expert Routing for Unsupervised Continual Anomaly Detection. IEEE Transactions on Industrial Informatics, 2025.
- Zhang, Z.; Zou, G.; Chen, C.; Qi, Z.; et al. A Task-Aware Parameter Decoupling Framework for Continual Anomaly Detection. IEEE Transactions on Industrial Informatics, 2025. [Google Scholar]
- Yang, J.; Shen, Y.; Deng, L. Continual Contrastive Anomaly Detection under Natural Data Distribution Shifts. In Proceedings of the 2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE), 2023; IEEE; pp. 144–149. [Google Scholar]
- Hu, C.; Xu, H.; Li, Y.; Sun, C.; Chen, X.; Yan, R. Continual anomaly detection with Cross-Condition feature contrast for nonstationary industrial data stream. Mechanical Systems and Signal Processing 2025, 238, 113254. [Google Scholar] [CrossRef]
- Fan, W.; Shangguan, W.; Bouguila, N. Continuous image anomaly detection based on contrastive lifelong learning. Applied Intelligence 2023, 53, 17693–17707. [Google Scholar] [CrossRef]
- Faber, K.; Corizzo, R.; Sniezynski, B.; Baron, M.; Japkowicz, N. Lifewatch: Lifelong wasserstein change point detection. In Proceedings of the 2022 International joint conference on neural networks (IJCNN), 2022; IEEE; pp. 1–8. [Google Scholar]
- Coil, C.; Faber, K.; Śniezyński, B.; Corizzo, R. Distance-based change point detection for novelty detection in concept-agnostic continual anomaly detection. Journal of Intelligent Information Systems 2025. [Google Scholar] [CrossRef]
- Tomas, P.R.; Felix, P.; Rosa, L.; Gomes, A.S.; Cordeiro, L. A novel approach for continual and federated network anomaly detection. In Proceedings of the Proceedings of the Future Technologies Conference, 2024; Springer; pp. 212–225. [Google Scholar]
- Li, X.; Tan, X.; Chen, Z.; Zhang, Z.; et al. One-for-more: Continual diffusion model for anomaly detection. In Proceedings of the Proceedings of the Computer Vision and Pattern Recognition Conference, 2025; pp. 4766–4775. [Google Scholar]
- Amalapuram, S.K.; Tamma, B.R.; Channappayya, S.S. Spider: A semi-supervised continual learning-based network intrusion detection system. In Proceedings of the IEEE INFOCOM 2024-IEEE Conference on Computer Communications. IEEE, 2024; pp. 571–580. [Google Scholar]
- Gori, V.; Veneri, G.; Ballarini, V. Continual Learning for anomaly detection on turbomachinery prototypes-A real application. In Proceedings of the 2022 IEEE congress on evolutionary computation (CEC), 2022; IEEE; pp. 1–7. [Google Scholar]
- Kumar, G.A.; Lavanya, B.M.; Mohiddin, M.K.; Mitra, S. IoT-enabled recurrent spatio-temporal adaptive attention of temporal convolutional transformer with continual learning for dairy farming. Expert Systems with Applications 2025, 127712. [Google Scholar] [CrossRef]
- Doshi, K.; Yilmaz, Y. Continual learning for anomaly detection in surveillance videos. In Proceedings of the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, 2020; pp. 254–255. [Google Scholar]
- Doshi, K.; Yilmaz, Y. Rethinking video anomaly detection-a continual learning approach. In Proceedings of the Proceedings of the IEEE/CVF winter conference on applications of computer vision, 2022; pp. 3961–3970. [Google Scholar]
- Li, W.; Zhan, J.; Wang, J.; Xia, B.; et al. Towards continual adaptation in industrial anomaly detection. In Proceedings of the Proceedings of the 30th ACM International Conference on Multimedia, 2022; pp. 2871–2880. [Google Scholar]
- Parisi, G.I.; Kemker, R.; Part, J.L.; Kanan, C.; Wermter, S. Continual lifelong learning with neural networks: A review. Neural networks 2019, 113, 54–71. [Google Scholar] [CrossRef]
- Corizzo, R.; Baron, M.; Japkowicz, N. Cpdga: Change point driven growing auto-encoder for lifelong anomaly detection. Knowledge-Based Systems 2022, 247, 108756. [Google Scholar] [CrossRef]
- Pezze, D.D.; Anello, E.; Masiero, C.; Susto, G.A. Continual learning approaches for anomaly detection. Evolving Systems 2025, 16, 111. [Google Scholar] [CrossRef]
- Maschler, B.; Pham, T.T.H.; Weyrich, M. Regularization-based continual learning for anomaly detection in discrete manufacturing. Procedia CIRP 2021, 104, 452–457. [Google Scholar] [CrossRef]
- Ejaz, A.; Mian, A.N.; Manzoor, S. Life-long phishing attack detection using continual learning. Scientific reports 2023, 13, 11488. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Lu, H.; Xu, X.; Wu, R.; et al. An incremental unified framework for small defect inspection. In Proceedings of the European conference on computer vision, 2024; Springer; pp. 307–324. [Google Scholar]
- Yu, M.; Wang, F. Ada-CAD: Adaptive Distillation and Dynamic Neighbor Masked Attention for Continual Anomaly Detection. In Proceedings of the International Conference on Intelligent Computing, 2025; Springer; pp. 182–194. [Google Scholar]
- Zhou, Y.; Lei, T.; Liu, H.; Du, N.; Huang, Y.; et al. Mixture-of-experts with expert choice routing. Advances in Neural Information Processing Systems 2022, 35, 7103–7114. [Google Scholar]
- Dahmardeh, M.; Setti, F. MECAD: A multi-expert architecture for continual anomaly detection. arXiv arXiv:2512.15323. [CrossRef]
- Harun, M.Y.; Gallardo, J.; Kanan, C. Controlling Neural Collapse Enhances Out-of-Distribution Detection and Transfer Learning. In Proceedings of the International Conference on Machine Learning, 2025. [Google Scholar]
- Chavan, V.; Koch, P.; Schlüter, M.; Briese, C.; Krüger, J. Active Data Collection and Management for Real-World Continual Learning via Pretrained Oracle. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2024; IEEE; pp. 4085–4096. [Google Scholar]
- Zhou, M.; Liu, J.; Wan, J.; Li, G.; Li, M. Exploring Multimodal Prompts For Unsupervised Continuous Anomaly Detection. In Proceedings of the Proceedings of the 33rd ACM International Conference on Multimedia, 2025; pp. 1510–1519. [Google Scholar]
- Li, E.; Gungor, O.; Shang, Z.; Rosing, T. CITADEL: Continual Anomaly Detection for Enhanced Learning in IoT Intrusion Detection. arXiv arXiv:2508.19450. [CrossRef]
- Bugarin, N.; Bugaric, J.; Barusco, M.; Pezze, D.D.; Susto, G.A. Unveiling the anomalies in an ever-changing world: A benchmark for pixel-level anomaly detection in continual learning. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024; pp. 4065–4074. [Google Scholar]
- Chin, M.; Corizzo, R. Continual semi-supervised malware detection. Machine Learning and Knowledge Extraction 2024, 6, 2829–2854. [Google Scholar] [CrossRef]
- Sayed, A.N.; Bensaali, F.; Nhlabatsi, A. Adaptive Appliance-Level Anomaly Detection Using Regularization and Replay Continual Learning Methods. In Proceedings of the Proceedings of the Sixth International Conference on Digital Age & Technological Advances for Sustainable Development, 2025; pp. 74–80. [Google Scholar]
- Ghunaim, Y.; Bibi, A.; Alhamoud, K.; Alfarra, M.; et al. Real-time evaluation in online continual learning: A new hope. In Proceedings of the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2023; pp. 11888–11897. [Google Scholar]
- Verwimp, E.; Aljundi, R.; Ben-David, S.; Bethge, M.; Cossu, A.; Gepperth, A.; et al. Continual learning: Applications and the road forward. Transactions on Machine Learning Research, 2024. [Google Scholar]
- Harun, M.Y.; Kanan, C. Overcoming the stability gap in continual learning. TMLR, 2024. [Google Scholar]
| 1 |
| Dimension | What to report |
|---|---|
| Task (regime of normality) | What defines a regime of “normal”: e.g., product category (images), activity/scene (video), concept/operating mode (tabular), or time window (time series). |
| Boundaries availability | Are regime transitions given (train/inference), partially given (only train), or not given (the stream is task-free)? |
| Identities availability | If boundaries exist, is the regime identity provided (train/inference), or must it be inferred/ignored? |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
