Submitted:
23 January 2026
Posted:
26 January 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Pleurotus Strains and Vinasse
2.2. Evaluation of the Degradation Capacity of Vinasse by Pleurotus Strains
2.3. Synthesis of δ-FeOOH Nanoparticles
2.4. Evaluation of the Degradation Capacity of Vinasse by Pleurotus Ostreatus and δ-FeOOH
2.5. Phytotoxicity with Lactuca Sativa Seeds
2.6. Statistical Analyses
3. Results and Discussion
3.1. Performance of Pleurotus Strains in Vinasse Treatment
3.2. Performance of the HI (Pleurotus Ostreatus) Strain in Conjunction with δ-FeOOH in 25% Vinasse
3.3. Phytotoxicity Test with Lactuca Sativa Seeds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lemessa, F; Simane, B; Seyoum, A; Gebresenbet, G. Assessment of the impact of industrial wastewater on river water quality around BLIP, Ethiopia. Sustainability 2023, 15, 4290. [Google Scholar] [CrossRef]
- Kato, S; Kansha, Y. Comprehensive review of industrial wastewater treatment techniques. Environmental Science and Pollution Research 2024, 31, 51064–51097. [Google Scholar] [CrossRef]
- Azevedo-Santos, V. M.; Fernandes, J. A.; de Souza Andrade, G.; de Moraes, P. M.; Magurran, A. E.; Pelicice, F. M.; Giarrizzo, T. An overview of vinasse pollution in aquatic ecosystems in Brazil. Environmental management 2024, 74, 1037–1044. [Google Scholar] [CrossRef]
- Christofoletti, C. A.; Escher, J. P.; Correia, J. E.; Marinho, J. F. U.; Fontanetti, C. S. Sugarcane vinasse: environmental implications of its use. Waste Manag. 2013, 33, 2752–2761. [Google Scholar] [CrossRef]
- Rodrigues Reis, CE; Hu, B. Vinasse from Sugarcane Ethanol Production: Better Treatment or Better Utilization? Front. Energy Res. 2017, 5, 7. [Google Scholar] [CrossRef]
- da Luz, FB; Gonzaga, LC; Cherubin, MR; Castioni, GAF; Carvalho, JLN. Soil health impact of long-term sugarcane vinasse recycling. Biofuels, Bioproducts and Biorefining 2024. [Google Scholar] [CrossRef]
- Gómez, J.; Rodríguez, O. Effects of vinasse on sugarcane (Saccharum officinarum) productivity. Rev. Fac. Agron. 2000, 17, 318–326. [Google Scholar]
- Jiang, Z.-P.; Li, Y.-R.; Wei, G.-P.; Liao, Q.; Su, T.-M.; Meng, Y.-C.; et al. Effect of long-term vinasse application on physico-chemical properties of sugarcane field soils. Sugar Tech 2012, 14, 412–417. [Google Scholar] [CrossRef]
- Elia Neto, A. Estado da Arte da Vinhaça. 2º Workshop “Resíduos urbanos e agrícolas: energia, reciclagem de nutrientes e produção de fertilizantes”; Campinas, São Paulo, 2016. [Google Scholar]
- Marcucci, SMP; et al. Techno-economic analysis of biogas production with vinasse. Biomass 2025, 5, 10. [Google Scholar] [CrossRef]
- Reis, MC. Avaliação da vinhaça para produção de hidrogênio em reator anaeróbio de leito fluidizado. Dissertação de Doutorado, Universidade de São Paulo, 2014. [Google Scholar]
- Reis, CER; et al. Vinasse treatment within the sugarcane ethanol industry using ozone combined with anaerobic and aerobic microbial processes. Environments 2019, 6, 5. [Google Scholar] [CrossRef]
- Rodrigues Reis, CE; Hu, B. Vinasse from Sugarcane Ethanol Production: Better Treatment or Better Utilization? Front. Energy Res. 2017, 5, 7. [Google Scholar] [CrossRef]
- Rulli, M M; Del Gobbo, L M; Colin, V L. Chapter 14 - Harmful effects of sugarcane vinasse on water bodies: conventional remediation technologies; Elsevier, 2023; pp. 375–394. [Google Scholar] [CrossRef]
- Fuess, L T; Rodrigues, I J; Garcia, M L. Fertirrigation with sugarcane vinasse: Foreseeing potential impacts on soil and water resources through vinasse characterization. Journal of Environmental Science and Health, Part A 2017, 52:11, 1063–1072. [Google Scholar] [CrossRef]
- De OLIVEIRA, N; RAMOS, K S; Da SILVA, F C. Avaliação da sustentabilidade de alternativas da utilização da vinhaça. Bioenergia em revista: diálogos 2025, 15, 51–69. [Google Scholar]
- Fernandes, MG; Oliveira, AH. Contaminação do solo por vinhaça: uma revisão dos impactos causados pela fertirrigação. Contribuciones a las Ciencias Sociales 2023, 16, 5394–5400. [Google Scholar] [CrossRef]
- Hoarau, J; Grondin, I; Caro, Y; Petit, T. Sugarcane distillery spent wash, a new resource for third-generation biodiesel production. Water 2018, 10, 1623. [Google Scholar] [CrossRef]
- Sousa, Rose Marie O.F.; et al. Hazardous impact of vinasse from distilled winemaking by-product on terrestrial plants and aquatic organisms. Ecotoxicology and Environmental Safety 2019, 183, 109493. [Google Scholar] [CrossRef] [PubMed]
- Pedro-Escher, J.; et al. Sugarcane Vinasse, a Residue of Ethanol Industry: Toxic, Cytotoxic and Genotoxic Potential Using the Allium cepa Test. Journal of Environmental Protection 2016, 7, 602–612. [Google Scholar] [CrossRef]
- Nkouakam, AN; et al. Effect of distillery effluent on seed germination in some crops. Scholars Journal of Agricultural and Veterinary Sciences 2025, 12, 213–220. [Google Scholar] [CrossRef]
- OGURA, Allan Pretti. Irrigation with water contaminated by sugarcane pesticides and vinasse (2022) Tese (Doutorado em Ciências) — USP.
- Nkouakam, Armelle Noukeu; et al. Effect of Distillery Effluent on Seed Germination in Some Crops. Sch J Agric Vet Sci 2025, 12, 213–220. [Google Scholar] [CrossRef]
- Golan-Rozen, N; et al. Environmental Science & Technology 2015, 49, 12351–12362. [CrossRef]
- Mishra, T.; et al. Advances in Microbial Bioremediation for Effective Wastewater Treatment. Water 2025, 17, 3196. [Google Scholar] [CrossRef]
- Gaylarde, CC; et al. Aspectos biológicos e técnicas de biorremediação de xenobióticos. Biotecnologia Ciência & Desenvolvimento 2005, 8, 36–43. [Google Scholar]
- Vilar, Débora S.; et al. Vinasse degradation using Pleurotus sajor-caju in a combined biological – Electrochemical oxidation treatment. Separation and Purification Technology 2018, 192, 287–296. [Google Scholar] [CrossRef]
- Viswanath, B.; et al. Fungal laccases and their applications in bioremediation. Enzyme research 2014, 2014, 163242. [Google Scholar] [CrossRef]
- Del Gobbo, L. M.; et al. The potential application of an autochthonous fungus from the northwest of Argentina for the treatment of sugarcane vinasse. Journal of hazardous materials 2019, 365, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Rajavat, A.S.; et al. Valorization of agro-residues for production of ligninolytic enzymes from Pleurotus spp. and their deployment in dye decolorisation. Biomass Conv. Bioref 2024, 14, 31741–31757. [Google Scholar] [CrossRef]
- Santos, M. P. de O.; et al. Application of fungal biomass of the genus Pleurotus in the bioremediation of Doce River waters after the disaster in Mariana/MG. CONTRIBUCIONES A LAS CIENCIAS SOCIALES 2025, 18, e15996. [Google Scholar] [CrossRef]
- González-González, et al. Bio-removal of emerging pollutants by advanced bioremediation techniques. Environmental Research 2022, 214, 113936. [Google Scholar] [CrossRef]
- Rashad, RM; et al. Green synthetic magnetic iron oxide nanoparticles for Cu2+ and Ni2+ removal. Applied Water Science 2025, 15, 266. [Google Scholar] [CrossRef]
- Xu, P.; et al. Use of iron oxide nanomaterials in wastewater treatment: a review. The Science of the total environment 2012, 424, 1–10. [Google Scholar] [CrossRef]
- Nizamuddin, S.; et al. Iron oxide nanomaterials for the removal of heavy metals and dyes from wastewater. 2019. [Google Scholar] [CrossRef]
- Matei, E; et al. Properties of magnetic iron oxides used as materials for wastewater treatment. Journal of Physics: Conference Series 2011, 304, 012022. [Google Scholar] [CrossRef]
- Oliveira, DQL; et al. Catalytic properties of iron oxides in oxidation reactions. Journal of Hazardous Materials 2008, 151, 280–284. [Google Scholar] [CrossRef]
- Oliveira, LCA; Fabris, JD; Pereira, MC. Óxidos de ferro e suas aplicações em processos catalíticos: uma revisão. Química Nova 2013, 36, 123–130. [Google Scholar] [CrossRef]
- Teixeira, APC; et al. Iron: a versatile element to produce materials for environmental applications. Journal of the Brazilian Chemical Society 2012, 23, 1579–1593. [Google Scholar] [CrossRef]
- Agarbati, A.; et al. Ecological distribution and oenological characterization of native Saccharomyces cerevisiae in an organic winery. Fermentation 2022, 8, 224. [Google Scholar] [CrossRef]
- Mohammad, P; et al. Application of RSM for optimization of decolorizing distillery wastewater using Aspergillus fumigatus. International Biodeterioration & Biodegradation 2006, 57, 195–199. [Google Scholar]
- Ferreira, LFR; et al. Evaluation of sugar-cane vinasse treated with Pleurotus sajor-caju utilizing aquatic organisms as toxicological indicators. Ecotoxicology and Environmental Safety 2011, 74, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Pereira, MC. Síntese, caracterização e aplicação de catalisadores heterogêneos baseados em óxidos de ferro para reações de Fenton. Dissertação de Doutorado, Universidade Federal de Minas Gerais, 2009. [Google Scholar]
- Pereira, MC; et al. Nanostructured δ-FeOOH: a novel photocatalyst for water splitting. Journal of Materials Chemistry 2011, 21, 1–11. [Google Scholar] [CrossRef]
- Chagas, P; et al. δ-FeOOH: a superparamagnetic material for controlled heat release under AC magnetic field. Journal of Nanoparticle Research 2013, 15, 1544. [Google Scholar] [CrossRef]
- Tam, N.F.Y.; Tiquia, S. Assessing the toxicity of spent pig litter using a seed germination technique. Resources, Conservation and Recycling 1994, 11, 261–274. [Google Scholar] [CrossRef]
- Maciel, M J M; et al. Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: a review. Electronic Journal of Biotechnology 2010, 13, 14–15. [Google Scholar] [CrossRef]
- Kumar, A.; Chandra, R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 2020, 6, e03170. [Google Scholar] [CrossRef]
- Esposito, E; Azevedo, JL. Fungos: uma introdução à biologia, bioquímica e biotecnologia; EDUSC: Bauru, 2010; Vol 2. [Google Scholar]
- Amaral, MCS; et al. Microfiltration of vinasse: sustainable strategy to improve its nutritive potential. Water Science and Technology 2016, 73, 1434–1441. [Google Scholar] [CrossRef]
- Marques, MO. Aspectos técnicos e legais da produção, transporte e aplicação de vinhaça. In Atualização em Produção de Cana-de-Açúcar; 2006; pp. pp 369–375. [Google Scholar]
- Rulli, M.M.; et al. Treatment of sugarcane vinasse using an autochthonous fungus from the northwest of Argentina and its potential application in fertigation practices. Journal of Environmental Chemical Engineering 2020, 8, 104371. [Google Scholar] [CrossRef]
- Nair, R.B.; Taherzadeh, M.J. Valorization of sugar-to-ethanol process waste vinasse: A novel biorefinery approach using edible ascomycetes filamentous fungi. Bioresource Technology 2016, 221, 469–476. [Google Scholar] [CrossRef]
- Silva, LM; et al. Avaliação inicial do potencial de Pleurotus eryngii na biorremediação de vinhaça. SaBios 2015, 10, 14–20. [Google Scholar]
- Rodrígues, S.; et al. Tratamiento de efluentes industriales coloreados con Pleurotus spp. Revista Iberoamericana de Micología 2003, 20, 164–168. [Google Scholar]
- Mane, J. D.; et al. Treatment of spentwash using chemically modified bagasse and colour removal studies. Bioresource Technology 2006, 97, 1752–1755. [Google Scholar] [CrossRef]
- Monteiro, RTR; et al. Avaliação da aplicação de vinhaça tratada com Pleurotus no crescimento de milho e sorgo. In Anais, USP; 2013. [Google Scholar]
- Faria, MCS; et al. Arsenic removal from contaminated water by ultrafine δ-FeOOH adsorbents. Chemical Engineering Journal 2014, 237, 47–54. [Google Scholar] [CrossRef]
- Silva, MF. Aplicação de óxidos de ferro nanoestruturados como adsorventes e fotocatalisadores. Química Nova 2015, 38, 393–398. [Google Scholar] [CrossRef]
- Mbuyazi, TB; Ajibade, PA. Magnetic iron oxide nanocomposites: synthetic techniques and environmental applications. Discover Nano 2024, 19, 158. [Google Scholar] [CrossRef]
- Silva, AC; et al. Improved photocatalytic activity of δ-FeOOH by using H2O2 as an electron acceptor. Journal of Photochemistry and Photobiology A: Chemistry 2017, 332, 54–59. [Google Scholar] [CrossRef]
- Borromeo, L. Efficient Oxidation of Methylene Blue via Catalytic Activation of Peroxymonosulfate via an Engineered δ-FeOOH/Pili Nutshell Biochar Composite. Applied Environmental Research 2025, 47. [Google Scholar] [CrossRef]
- Chukhrov, FV; et al. Iron oxides and hydroxides in the weathering zone. International Geology Review 1976, 19, 873–890. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The iron oxides: Structure, properties, reactions, occurrence, and uses; Wiley VCH: Weinheim, 1996. [Google Scholar]
- Pinto, LMC; et al. Nanostructured δ-FeOOH: an efficient Fenton-like catalyst. Applied Catalysis B: Environmental 2012, 123–124, 282–289. [Google Scholar]
- Huang, CP; Huang, YH. Comparison of catalytic decomposition of hydrogen peroxide and catalytic degradation of phenol by immobilized iron oxides. Applied Catalysis A: General 2008, 346, 140–148. [Google Scholar] [CrossRef]
- Haber, F.; Weiss, J. The Catalytic Decomposition of Hydrogen Peroxide by Iron Salts. Proceedings of the Royal Society of London. Series A 1934, 147, 332–351. [Google Scholar]
- Lin, S. S.; Gurol, M. D. Catalytic decomposition of hydrogen peroxide on iron oxide: Kinetics, mechanism, and implications. Environmental Science & Technology 1998, 32, 1417–1423. [Google Scholar] [CrossRef]
- Ramirez, JH; et al. Modelling heterogeneous Fenton processes using modified clays. Applied Catalysis B 2007, 71, 44–56. [Google Scholar] [CrossRef]
- Harbour, JR; et al. Electron spin resonance of hydroxyl radical in Fenton-type systems. Canadian Journal of Chemistry 1974, 52, 3549–3553. [Google Scholar] [CrossRef]
- Yalfani, MS; et al. Heterogeneous Fenton-like oxidation of phenol using Fe-containing solids. Applied Catalysis B 2009, 89, 519–526. [Google Scholar] [CrossRef]






| Treatment | SB Pleurotus ostreatus |
HI Pleurotus ostreatus |
ERY Pleurotus eryngii |
|---|---|---|---|
| Vinasse 25% | 223 aBC | 7,5 bC | 61,5 aB |
| Vinasse 25% pH 6 | 49,2 °C | 3,8 bC | 23,6 °C |
| Vinasse 100% | 4531,7 aA | 4138,3 aA | 2890,0 aA |
| Vinasse 100% pH 6 | 144,4 aB | 67,3 bB | 3857,0 aB |
| Treatment | SB Pleurotus ostreatus |
HI Pleurotus ostreatus |
ERY Pleurotus eryngii |
|---|---|---|---|
| Vinasse 25% | 7.30 aA | 4.95 bB | 5.18 bB |
| Vinasse 25% pH 6 | 8.08 aA | 5.98 bA | 6.00 bA |
| Vinasse 100% | 3.87 aB | 3.93 aC | 3.84 aC |
| Vinasse 100% pH 6 | 7.96 aA | 6.40 bA | 6.21 bA |
| Treatment | SB Pleurotus ostreatus |
HI Pleurotus ostreatus |
ERY Pleurotus eryngii |
|---|---|---|---|
| Vinasse 25% | 4145 b A | 76 a A | 1366 b A |
| Vinasse 25% pH6 | 2860 a A | 239 a B | 1011 a A |
| Vinasse 100% | 24952 a A | 19496 a C | 19223 A |
| Vinasse 100% pH6 | 8848 a A | 9384 a BC | 11500 a A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
