Submitted:
22 January 2026
Posted:
23 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Evolution over Time of Anti-Clonal Therapy in Systemic-AL Amyloidosis
2.1. Second Half of the 20th Century, the Chemotherapy Era
2.2. First Two Decades of the 21st Century, the Era of the New Agents
2.3. Third Decade of the 21st Century, the Immunotherapy Era
3. The Evolving Landscape of Bortezomib-Based Therapies in NDAL vs. NDMM
3. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ADC | Antibody-drug-conjugates |
| AL | Light-chain amyloidosis |
| AL/MM | Light-chain amyloidosis and multiple myeloma |
| ASCT | Autologous stem cell transplant |
| B | Bendamustine |
| BCMA | B-cell maturation antigen |
| BsAbs | Bispecific antibodies |
| C | Cyclophosphamide |
| CAR | Chimeric antigen receptor |
| cBMPCs | Clonal bone marrow plasma cells |
| d | Dexamethasone |
| D | Daratumumab |
| Elo | Elotuzumab |
| HDM | High dose melphalan |
| Ig | Immunoglobulin |
| IMiDs | Immunomodulatory drugs |
| Isa | Isatuximab |
| LC | Light chain |
| M | Melphalan |
| mAbs | Monoclonal antibodies |
| MGs | Monoclonal gammopathies |
| MGCS | Monoclonal gammopathy of clinical significance |
| MGUS | Monoclonal gammopathy of uncertain significance |
| MM | Multiple Myeloma |
| MRD | Measurable residual disease |
| ND | Newly diagnosed |
| NDAL | Newly diagnosed systemic AL amyloidosis |
| NDMM | Newly diagnosed multiple myeloma |
| ORR | Overall response rate |
| OS | Overall survival |
| p | Prednisone |
| P | Pomalidomide |
| PIs | Proteasome inhibitors |
| R | Lenalidomide |
| RR | Relapsed/refractory |
| SMM | Smoldering multiple myeloma |
| T | Thalidomide |
| TE | Transplant eligible |
| TI | Transplant ineligible |
| TsAbs | Trispecific antibodies |
| V | Bortezomib |
| WM | Waldenström macroglobulinemia |
References
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.d.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef]
- Ríos-Tamayo, R.; Krsnik, I.; Gómez-Bueno, M.; Garcia-Pavia, P.; Segovia-Cubero, J.; Huerta, A.; Salas, C.; Silvestre, R.; Sánchez, A.; Manso, M.; et al. AL Amyloidosis and Multiple Myeloma: A Complex Scenario in Which Cardiac Involvement Remains the Key Prognostic Factor. Life 2023, 13, 1518. [Google Scholar] [CrossRef]
- Ríos-Tamayo, R. Monoclonal Gammopathies. In Comprehensive Hematology and Stem Cell Research, 1st Edition; Editor Nima Rezaei; Elsevier: Amsterdam, Netherlands, 2024; pp. 358–374. [Google Scholar] [CrossRef]
- Ríos-Tamayo, R.; Paiva, B; Lahuerta, J.J.; Martínez López, J.; Duarte, R.F. Monoclonal Gammopathies of Clinical Significance: A Critical Appraisal. Cancers 2022, 14, 5247. [Google Scholar] [CrossRef]
- Ríos-Tamayo, R.; Sánchez, M.J.; Gómez-Rojas, S.; Rodríguez-Barranco, M.; Segura, G.P.; Redondo-Sánchez, D.; Gómez-Tarragona, G.; Nicolás, A.R.; Ruiz-Cabello, F.; Jiménez, P.; et al. Cell Count Differentials by Cytomorphology and Next-Generation Flow Cytometry in Bone Marrow Aspirate: An Evidence-Based Approach. Diagnostics 2023, 13, 1071. [Google Scholar] [CrossRef]
- Ríos-Tamayo, R.; Sainz, J.; Martínez-López, J.; Puerta, J.M.; Chang, D.Y.L.; Rodríguez, T.; Lahuerta, J.J. Early mortality in multiple myeloma: The time-dependent impact of comorbidity. A population-based study in 621 real-life patients. Am. J. Hematol. 2016, 91, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Tamayo, R.; Lecumberri, R.; Cibeira, M.T.; González-Calle, V.; Alonso, R.; Domingo-González, A.; Landete, E.; Encinas, C.; Iñigo, B.; Blanchard, M.J.; et al. A Simple Frailty Score Predicts Survival and Early Mortality in Systemic AL Amyloidosis. Cancers 2024, 16, 1689. [Google Scholar] [CrossRef]
- Ríos-Tamayo, R.; Sánchez Rodríguez, D.; Chang-Chan, D.-Y.-L.; Sánchez Pérez, M.J. Epidemiology of Multiple Myeloma. In Update on Multiple Myeloma; Editor Khalid Ahmed Al-Anazi; Intech: London, UK, 2019; pp. 13–33. [Google Scholar] [CrossRef]
- Ríos-Tamayo, R. Epidemiology of systemic light-chain (AL) amyloidosis. Lymphatics 2025, 3, 25. [Google Scholar] [CrossRef]
- Muchtar, E; Dispenzieri, A.; Leung, N.; Lacy, M.Q.; Buadi, F.K.; Dingli, D.; Grogan, M.; Hayman, S.R.; Kapoor, P.; Hwa, Y.L.; et al. Depth of organ response in AL amyloidosis is associated with improved survival: grading the organ response criteria. Leukemia 2018, 32, 2240–2249. [Google Scholar] [CrossRef] [PubMed]
- Muchtar, E.; Geyer, S.; Merlini, G.; Gertz, M.A. Patients with a cardiac complete response in AL amyloidosis have survival rates similar to those of a matched general population. Blood 2024, 144, 790–793. [Google Scholar] [CrossRef] [PubMed]
- Zabaleta, A.; Puig, N.; Cedena, M.T.; Oliver-Caldes, A.; Pérez, J.J.; Moreno, C.; Tamariz-Amador, L.E.; Rodriguez-Otero, P.; Prosper, F.; Gonzalez-Calle, V.; et al. Clinical significance of complete remission and measurable residual disease in relapsed/refractory multiple myeloma patients treated with T-cell redirecting immunotherapy. Am. J. Hematol. 2025, 100, 93–102. [Google Scholar] [CrossRef]
- Ntanasis-Stathopoulos, I.; Filippatos, C.; Ntanasis-Stathopoulos, A.; Malandrakis, P.; Kastritis, E.; Tsitsilonis, O.E.; Dimopoulos, M.A.; Terpos, E.; Gavriatopoulou, M. Evaluating Minimal Residual Disease Negativity as a Surrogate Endpoint for Treatment Efficacy in Multiple Myeloma: A Meta-Analysis of Randomized Controlled Trials. Am. J. Hematol. 2025, 100, 427–438. [Google Scholar] [CrossRef]
- Lasa, M.; Nuvolone, M.; Kostopoulos, I.V.; Jelinek, T.; Basset, M.; Milani, P.; Massa, M.; Theodorakakou, F.; Wechalekar, A.D.; Zherniakova, A.; et al. Clinical Significance of Measurable Residual Disease (MRD) in Light-Chain (AL) Amyloidosis. Blood 2024, 144, 889–891. [Google Scholar] [CrossRef]
- Sarubbi, C.; Abowali, H.; Varga, C.; Landau, H. Treatment of AL amyloidosis in the era of novel immune and cellular therapies. Front. Oncol. 2024, 14, 1425521. [Google Scholar] [CrossRef]
- O’Sullivan, M.; Osman, W.; Krisnagopal, A.; Parry, M.; Davis, M.; Chu, C.H. Integrated specialty care for amyloidosis: a scoping review using the Consolidated Framework for Implementation Research. BMC Health Serv. Res. 25, 415. [CrossRef] [PubMed]
- Muchtar, E.; Grogan, M.; aus dem Siepen, F.; Waddington-Cruz, M.; Misumi, Y.; Carroll, A.S.; Clarke, J.O.; Sanchorawala, V.; Milani, P.; Caccialanza, R.; et al. Supportive care for systemic amyloidosis: International Society of Amyloidosis (ISA) expert panel guidelines. Amyloid 2025, 32, 93–116. [Google Scholar] [CrossRef] [PubMed]
- Palladini, G.; Milani, P. Individualized Approach to Management of Light Chain Amyloidosis. J. Natl. Compr. Canc. Netw. 2023, 21, 91–98. [Google Scholar] [CrossRef]
- Gertz, M.A. Immunoglobulin light chain amyloidosis: 2024 update on diagnosis, prognosis, and treatment. Am. J. Hematol. 2024, 99, 309–324. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Zhong, L. Current status and prospect of anti-amyloid fibril therapy in AL amyloidosis. Blood Rev. 2024, 66, 101207. [Google Scholar] [CrossRef]
- Giorgetti, A.; Pucci, A.; Aimo, A. A Brief history of amyloidosis. In Cardiac Amyloidosis; Emdin, M., Vergaro, G., Aimo, A., Fontana, M., Eds.; Springer: Cham, Switzerland, 2024; pp. 13–22. [Google Scholar] [CrossRef]
- Blokhin, N.; Larionov, L.F.; Perevod-chikova, N.I.; Chebotreva, L.; Merkulova, N. Clinical experiences with sarcolysin in neoplastic diseases. Ann. N.Y. Acad. Sci. 1958, 68, 1128. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.A.; Bayrd, E.D. Primary" Systemic Amyloidosis and Myeloma Discussion of Relationship and Review of 81 Cases. Arch Intern Med 1961, 107, 344–353. [Google Scholar] [CrossRef]
- Jones, N.F.; Hilton, P.J.; Tighe, J.R.; Hobbs, J.R. Treatment of “primary” renal amyloidosis with melphalan. The Lancet 1972, 300, 616–619. [Google Scholar] [CrossRef]
- Kyle, R.A.; Bayrd, E.D. Amyloidosis: Review of 236 cases. Medicine (Baltimore) 1975, 54, 271–99. [Google Scholar] [CrossRef]
- Swan, D.; Gurney, M.; Krawczyk, J.; Ryan, A.E.; O’Dwyer, M. Beyond DNA Damage: Exploring the Immunomodulatory Effects of Cyclophosphamide in Multiple Myeloma. HemaSphere 2020, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Milani, P.; Schönland, S.; Merlini, G.; Kimmich, C.; Foli, A.; Dittrich, T.; Basset, M.; Müller-Tidow, C.; Bochtler, T.; Palladini, G.; et al. Treatment of AL amyloidosis with bendamustine: a study of 122 patients. Blood 2018, 132, 1988–1991. [Google Scholar] [CrossRef]
- Chakraborty, R.; Milani, P.; Palladini, G.; Gertz, M. Role of autologous haematopoietic cell transplantation in the treatment of systemic light chain amyloidosis in the era of anti-CD38 monoclonal antibodies. Lancet Haematol. 2023, 10, e936–940. [Google Scholar] [CrossRef]
- Jelinek, T.; Kufova, Z.; Hajek, R. Immunomodulatory drugs in AL amyloidosis. Crit. Rev. Oncol. Hematol. 2016, 99, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Javed, S.; Iqtidar, T.; Fatima, H.; Hashim, S.; Rehan, T.; Maaz, S.; Musa, M.; Zaka, M.; Neupane, K.; Khawar, M.; et al. Efficacy and Safety Profile of Proteasome Inhibitor Based Drug Regimens for Treatment of NewlyDiagnosed AL Amyloidosis: A Systematic Review. Blood 2020, 136 (Suppl.1), 31. [Google Scholar] [CrossRef]
- Mikhael, J.R.; Schuster, S.R.; Jimenez-Zepeda, V.H.; Bello, N.; Spong, J.; Reeder, C.B.; Stewart, A.K.; Bergsagel, P.L.; Fonseca, R. Cyclophosphamide-bortezomib-dexamethasone (CyBorD) produces rapid and complete hematologic response in patients with AL amyloidosis. Blood 2012, 119, 4391–4394. [Google Scholar] [CrossRef]
- Godara, A.; Palladini, G. Monoclonal Antibody Therapies in Systemic Light-Chain Amyloidosis. Hematol. Oncol. Clin. N. Am. 2020, 34, 1145–1159. [Google Scholar] [CrossRef]
- Leong, S.; Pui, H.; Kirkham, Z.; Popat, R. Antibody drug conjugates for the treatment of multiple myeloma. Am. J. Hematol. 2022, 98, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Wechalekar, A.D.; Sanchorawala, V. Daratumumab in AL amyloidosis. Blood 2022, 140, 2317–2322. [Google Scholar] [CrossRef]
- Kastritis, E.; Palladini, G.; Minnema, M.C.; Wechalekar, A.D.; Jaccard, A.; Lee, H.C.; Sanchorawala, V.; Gibbs, S.; Mollee, P.; Venner, C.P.; et al. Daratumumab-Based Treatment for Immunoglobulin Light-Chain Amyloidosis. N. Engl. J. Med. 2021, 385, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Parker, T.L.; Rosenthal, A; Sanchorawala, V.; Landau, H.J.; Campagnaro, E.L.; Kapoor, P.; Neparidze, N.; Girnius, S.; 7 Hagen, P.; Scott, E.C.; et al. Isatuximab for relapsed and/or refractory AL amyloidosis: results of a prospective phase 2 trial (SWOG S1702). Blood 2025, 146, 2507–2516. [Google Scholar] [CrossRef]
- Dittrich, T.; Hansen, T; Kimmich, C.R.; Veelken, K.; Jauch, A.; Raab, M.S.; Müller-Tidow, C.; Hegenbart, U.; Schönland, S.O. Elotuzumab in Combination With Dose Reduced IMiDs and Dexamethasone for AL Amyloidosis Patients With Relapsed/Refractory Plasma Cell Dyscrasia and Advanced Organ Involvement. Am. J. Hematol. 2025, 100, 1098–1101. [Google Scholar] [CrossRef]
- Kastritis, E. BCMA: BeCoMing a new hope for AL amyloidosis. Blood 2025, 146, 1874–1875. [Google Scholar] [CrossRef] [PubMed]
- Jamroziak, K.; Zielonka, K.; Khwaja, J.; Wechalekar, A.D. Update on B-cell maturation antigen-directed therapies in AL amyloidosis. Br. J. Haematol. 2025, 206, 817–831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Godara, A.; Pan, S.; Toskic, D.; Fogaren, T.; Sborov, D.W.; Comenzo, R.; Kansagra, A. Belantamab Mafadotin in Patients with Relapsed/Refractory AL Amyloidosis with Myeloma. Blood 2021, 138, 1670–1672. [Google Scholar] [CrossRef]
- Leung, N.; Chapman, J.A.; Bhatia, S. First report of teclistamab in a patient with relapsed AL amyloidosis and multiple mieloma. e. J. Haem. 2023, 4, 1157–1159. [Google Scholar] [CrossRef]
- Vianna, P.; Chakraborty, R.; Hossain, S.; Bhutani, D.; Miller, S.; Rossi, A.; Cuddy, S.A.M.; Falk, R.H.; Lentzsch, S.; Laubach, J.; et al. Safety and efficacy of elranatamab in patients with daratumumab relapsed and/or refractory immunoglobulin light-chain amyloidosis. Blood 2025, 146, 1929–1935. [Google Scholar] [CrossRef]
- Chakraborty, R.; Kastritis, E.; Huart, A.; Jaccard, A.; Landau, H.; Iida, S.; Motorna, O.; Mollee, P.; Ishida, T.; Kawano, Y.; et al. Phase 1/2 dose escalation and expansion study of etentamig in patients with relapsed or refractory light chain. Blood 2025, 146, 692–693. [Google Scholar] [CrossRef]
- Lewis, E; Jimenez-Zepeda, V.H. BCMA CAR-T: From Multiple Myeloma to Light-Chain Amyloidosis. Curr. Oncol. 2025, 32, 418. [Google Scholar] [CrossRef]
- Lebel, L; Asherie, N.; Kfir-Erenfeld, S.; Grisariu, S.; Avni, B.; Elias, S.; Assayag, M.; Dubnikov-Sharon, T.; Pick, M.; Alexander-Shani, R.; et al. Efficacy and Safety of Anti–B-Cell Maturation Antigen Chimeric Antigen Receptor T-Cell for the Treatment of Relapsed and Refractory AL Amyloidosis. J. Clin. Oncol. 2024, 43, 2007–2016. [Google Scholar] [CrossRef]
- Landau, H.J.; Hughes, C.; Rosenberg, A.S.; Abedi, M.; Raza, S.; Zonder, J.A.; Brailovski, E.; Liu, J. Safety and efficacy data from Nexicart-2, the first US trial of CAR-T in R/R light chain (AL) amyloidosis, NXC-201. J. Clin. Oncol. 2025, 43, 7508. [Google Scholar] [CrossRef]
- Tan, M.S.Y.; Warsame, R.; Parrondo, R.; Muchtar, E.; Kourelis, T.; Buadi, F.; Gonsalves, W.; Cook, J.; Kapoor, P.; Hayman, S.; et al. AL Amyloidosis: A Real-World Experience with CAR-T Cell Therapy. Blood Adv. 2025. [Google Scholar] [CrossRef]
- Goel, U.; Dima, D.; Davis, J.; Ahmed, N.; Shaikh, H.; Lochner, J.; Abdallah, A.O.; Khouri, J.; Hashmi, H.; Anwer, F. Safety and efficacy of B cell maturation antigen-directed CAR T-cell therapy in patients with relapsed/refractory multiple myeloma and concurrent light chain amyloidosis. Eur. J. Haematol. 2024, 113, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Rees, M.; Cassano, R.; Tan, M.; Zolotov, E; Sidana, S.; Dima, D.; Kort, J.; Afrough, A.; Gaballa, M.; Pasvolsky, O.; et al. The real-world safety and efficacy of BCMA-directed chimeric antigen receptor T-cell therapy in systemic AL amyloidosis. Blood 2025, 146, 2181–2182. [Google Scholar] [CrossRef]
- Oliver-Caldes, A.; Jiménez, R.; Español-Rego, M.; Cibeira, M.T.; Ortiz-Maldonado, V.; Quintana, L.F.; Castillo, P.; Guijarro, F.; Tovar, N.; Montoro, M.; et al. First report of CAR-T therapy in AL amyloidosis and relapsed/refractory multiple myeloma. J. Immunother. Cancer 2021, 9, e003783. [Google Scholar] [CrossRef]
- van de Donk, N.W.C.J.; Vega, G.; Perrot, A.; Anguille, S.; Oriol, A.; Minnema, M.; Kaiser, M.F.; Lee, H.C.; Garfall, A.; Matous, J.V.; et al. First-in-human study of JNJ-79635322 (JNJ-5322), a novel, next-generation trispecific antibody (TsAb), in patients (pts) with relapsed/refractory multiple myeloma (RRMM): Initial phase 1 results. J. Clin. Oncol. 2025, 43, 7505. [Google Scholar] [CrossRef]
- Richardson, P.G.; Barlogie, B.; Berenson, J.; Singhal, S.; Jagannath, S.; Irwin, D.; Rajkumar, S.V.; Srkalovic, G.; Alsina, M.; Alexanian, R.; et al. A Phase 2 Study of Bortezomib in Relapsed, Refractory Myeloma. N. Engl. J. Med. 2003, 348, 2609–261. [Google Scholar] [CrossRef]
- Jagannath, S.; Durie, B.G.M.; Wolf, J.; Camacho, E.; Irwin, D.; Lutzky, J.; McKinley, M.; Gabayan, E.; Mazumder, A.; Schenkein, D.; et al. Bortezomib therapy alone and in combination with dexamethasone for previously untreated symptomatic multiple mieloma. Br. J. Haematol. 2005, 129, 776–783. [Google Scholar] [CrossRef]
- Harousseau, J.L.; Attal, M.; Leleu, X.; Troncy, J.; Pegourie, B.; Stoppa, A.M.; Hulin, C.; Benboubker, L.; Fuzibet, J.G.; Renaud, M.; et al. Bortezomib plus dexamethasone as induction treatment prior to autologous stem cell transplantation in patients with newly diagnosed multiple myeloma: results of an IFM phase II study. Haematologica 2006, 91, 1498–1505. [Google Scholar]
- Rosiñol, L.; Oriol, A.; Mateos, M.V.; Sureda, A.; García-Sánchez, P.; Gutiérrez, N.; Alegre, A.; Lahuerta, J.J.; de la Rubia, J.; Herrero, C.; et al. Phase II Pethema Trial of Alternating Bortezomib and Dexamethasone As Induction Regimen Before Autologous Stem-Cell Transplantation in Younger Patients With Multiple Myeloma: Efficacy and Clinical Implications of Tumor Response Kinetics. J. Clin. Oncol. 2007, 25, 4452–4458. [Google Scholar] [CrossRef]
- Harousseau, J.L.; Attal, M.; Avet-Loiseau, H.; Marit, G.; Caillot, D.; Mohty, M.; Lenain, P.; Hulin, C.; Facon, T.; Casassus, P.; et al. Bortezomib Plus Dexamethasone Is Superior to Vincristine Plus Doxorubicin Plus Dexamethasone As InductionTreatment Prior to Autologous Stem-Cell Transplantation in Newly Diagnosed Multiple Myeloma: Results of the IFM 2005-01 Phase III Trial. J. Clin. Oncol. 2010, 28, 4621–4629. [Google Scholar] [CrossRef]
- Girnius, S.K.; Lee, S.; Kambhampati, S.; Rose, M.G.; Mohiuddin, A.; Houranieh, A.; Zimelman, A.; Grady, T.; Mehta, P.; Behler, C.; et al. A Phase II trial of weekly bortezomib and dexamethasone in veterans with newly diagnosed multiple myeloma not eligible for or who deferred autologous stem cell transplantation. Br. J. Haematol. 2015, 169, 36–43. [Google Scholar] [CrossRef]
- Niesvizky, R.; Flinn, I.W.; Rifkin, R.; Gabrail, N.; Charu, V.; Clowney, B.; Essell, J.; Gaffar, Y.; Warr, T.; Neuwirth, R.; et al. Community-Based Phase IIIB Trial of Three UPFRONT Bortezomib-Based Myeloma Regimens. J. Clin. Oncol. 2015, 33, 3921–3929. [Google Scholar] [CrossRef] [PubMed]
- Kastritis, E.; Anagnostopoulos, A.; Roussou, M.; Toumanidis, S.; Pamboukas, C.; Migkou, M.; Tassidou, A.; Xilouri, I.; Delibasi, S.; Psimenou, E.; et al. Treatment of light chain (AL) amyloidosis with the combination of bortezomib and dexamethasone. Haematologica 2007, 92, 1351–1358. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Q.; Chen, W.; Zeng, C.; Chen, Z.; Gong, D.; Zhang, H.; Liu, Z. Induction therapy with bortezomib andexamethasone followed by autologous stem cell transplantation versus autologous stem cell transplantation alone in the treatment of renal AL amyloidosis: a randomized controlled trial. BMC Med. 2014, 12, 2. Available online: http://www.biomedcentral.com/1741-7015/12/2. [CrossRef]
- Sanchorawala, V.; Brauneis, D.; Shelton, A.C.; Lo, S.; Sun, F.; Sloan, J.M.; Quillen, K.; Seldin, D.C. Induction Therapy with Bortezomib Followed by Bortezomib-High Dose Melphalan and Stem Cell Transplantation for Light Chain Amyloidosis: Results of a Prospective Clinical Trial. Biol. Blood Marrow Transplant. 2015, 1445–1451. [Google Scholar] [CrossRef] [PubMed]
- Minnema, M.C.; Nasserinejad, K.; Hazenberg, B.; Hegenbart, U.; Vlummens, P.; Ypma, P.F.; Kröger, N.; Wu, K.L.; Kersten, M.J.; Schaafsma, M.R.; et al. Bortezomib-based induction followed by stem cell transplantation in light chain amyloidosis: results of the multicenter HOVON 104 trial. Haematologica 2019, 104, 2274–2282. [Google Scholar] [CrossRef] [PubMed]
- Landau, H.; Lahoud, O.; Devlin, S.; Lendvai, N.; Chung, D.J.; Dogan, A.; Landgren, C.O.; Giralt, S.; Hassoun, H. Pilot Study of Bortezomib and Dexamethasone Pre- and Post-Risk-Adapted Autologous Stem Cell Transplantation in AL Amyloidosis. Biol. Blood Marrow Transplant. 2020, 204–208. [Google Scholar] [CrossRef]
- Jakubowiak, A.J.; Kendall, T.; Al-Zoubi, A.; Khaled, Y.; Mineishi, S.; Ahmed, A.; Campagnaro, E.; Brozo, C.; Braun, T.; Talpaz, M.; Kaminski, M.S. Phase II Trial of Combination Therapy With Bortezomib, Pegylated Liposomal Doxorubicin, and Dexamethasone in Patients With Newly Diagnosed Myeloma. J. Clin. Oncol. 2009, 27, 5015–5022. [Google Scholar] [CrossRef]
- Palumbo, A.; Gay, F.; Falco, P.; Crippa, C.; Montefusco, V.; Patriarca, F.; Rossini, F.; Caltagirone, S.; Benevolo, G.; Norbert Pescosta, N.; et al. Bortezomib As Induction Before Autologous Transplantation, Followed by Lenalidomide As Consolidation-Maintenance in Untreated Multiple Myeloma Patients. J. Clin. Oncol. 2010, 28, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, P.; Schmidt-Wolf, I.G.H.; van der Holt, B.; el Jarari, L.; Bertsch, U.; Salwender, H.; Zweegman, S.; Vellenga, E.; Broyl, A.; Blau, I.W.; et al. Bortezomib Induction and Maintenance Treatment in Patients With Newly Diagnosed Multiple Myeloma: Results of the Randomized Phase III HOVON-65/GMMG-HD4 Trial. J. Clin. Oncol. 2012, 30, 2946–2955. [Google Scholar] [CrossRef]
- San Miguel, J.F.; Schlag, R.; Khuageva, N.K.; Dimopoulos, M. A.; Shpilberg, O.; Kropff, M.; Spicka, I.; Petrucci, M.T.; Palumbo, A.; Samoilova, O.S.; et al. Bortezomib plus Melphalan and Prednisone for Initial Treatment of Multiple Myeloma. N. Engl. J. Med. 2008, 359, 906–917. [Google Scholar] [CrossRef] [PubMed]
- Mateos, M.V.; Oriol, A.; Martínez-López, J.; Gutiérrez, N.; Teruel, A.I.; de Paz, R.; García-Laraña, J.; Bengoechea, B.; Martín, A.; Díaz Mediavilla, J.; et al. Bortezomib, melphalan, and prednisone versus bortezomib, thalidomide, and prednisone as induction therapy followed by maintenance treatment with bortezomib and thalidomide versus bortezomib and prednisone in elderly patients with untreated multiple myeloma: a randomised trial. Lancet Oncol. 2010, 11, 934–941. [Google Scholar] [CrossRef]
- Palumbo, A.; Bringhen, S.; Rossi, D.; Cavalli, M.; Larocca, A.; Ria, R.; Offidani, M.; Patriarca, F.; Nozzoli, C.; Guglielmelli, T.; et al. Bortezomib-Melphalan-Prednisone-Thalidomide Followed by Maintenance With Bortezomib-Thalidomide Compared With Bortezomib-Melphalan-Prednisone for Initial Treatment of Multiple Myeloma: A Randomized Controlled Trial. J. Clin. Oncol. 2010, 28, 5101–5109. [Google Scholar] [CrossRef]
- Mateos, M.V.; Martínez-López, J.; Hernández, M-T.; Ocio, E.M.; Rosiñol, L.; Martínez, R.; Teruel, A.-I.; Gutiérrez, N.C.; Martín Ramos, M.L.; Oriol, A.; et al. Sequential vs alternating administration of VMP and Rd in elderly patients with newly diagnosed MM. Blood 2016, 127, 420–425. [Google Scholar] [CrossRef]
- Mateos, M.V.; Paiva, B.; Cedena, M.T.; Puig, N.; Sureda-Balari, A.M.; González de la Calle, V.; Oriol, A.; Ocio, E.M.; Rosiñol, L.; González Montes, Y.; et al. Induction therapy with bortezomib, melphalan, and prednisone followed by lenalidomide and dexamethasone versus carfilzomib, lenalidomide, and dexamethasone with or without daratumumab in older, fit patients with newly diagnosed multiple myeloma (GEM-2017FIT): a phase 3, open-label, multicentre, randomised clinical trial. Lancet Haematol. 2025, 12, e588–e598. [Google Scholar] [CrossRef]
- Kastritis, E.; Leleu, X.; Arnulf, B.; Zamagni, E.; Cibeira, M.T.; Kwok, F.; Mollee, P.; Hájek, R.; Moreau, P.; Jaccard, A.; et al. Bortezomib, Melphalan, and Dexamethasone for Light-Chain Amyloidosis. J. Clin. Oncol. 2020, 38, 3252–3260. [Google Scholar] [CrossRef] [PubMed]
- Reeder, C.B.; Reece, D.E.; Kukreti, V.; Chen, C.; Trudel, S.; Hentz, J.; Noble, B.; Pirooz, N.A.; Spong, J.E.; Piza, J.G.; et al. Cyclophosphamide, bortezomib and dexamethasone induction for newly diagnosed multiple myeloma: high response rates in a phase II clinical trial. Leukemia 2009, 23, 1337–1341. [Google Scholar] [CrossRef]
- Bensinger, W.I.; Jagannath, S.; Vescio, R.; Camacho, E.; Wolf, J.; Irwin, D.; Capo, G.; McKinley, M.; Potts, P.; Vesole, D.H.; et al. Phase 2 study of two sequential three-drug combinations containing bortezomib, cyclophosphamide and dexamethasone, followed by bortezomib, thalidomide and dexamethasone as frontline therapy for multiple myeloma. Br. J. Haematol. 2010, 148, 562–568. [Google Scholar] [CrossRef]
- Kumar, S.; Flinn, I.; Richardson, P.G.; Hari, P.; Callander, N.; Noga, S.J.; Stewart, A.K.; Turturro, F.; Rifkin, R.; Wolf, J.; et al. Randomized, multicenter, phase 2 study (EVOLUTION) of combinations of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide in previously untreated multiple myeloma. Blood 2012, 119, 4375–4382. [Google Scholar] [CrossRef]
- Mai, E.K.; Bertsch, U.; Dürig, J.; Kunz, C.; Haenel, M.; Blau, I.W.; Munder, M.; Jauch, A.; Schurich, B.; Hielscher, T.; et al. Phase III trial of bortezomib, cyclophosphamide and dexamethasone (VCD) versus bortezomib, doxorubicin and dexamethasone (PAd) in newly diagnosed myeloma. Leukemia 2015, 1721–1729. [Google Scholar] [CrossRef]
- Moreau, P.; Hulin, C.; Macro, M.; Caillot, D.; Chaleteix, C.; Roussel, M.; Garderet, L.; Royer, B.; Brechignac, S.; Tiab, M.; et al. VTD is superior to VCD prior to intensive therapy in multiple myeloma: results of the prospective IFM2013-04 trial. Blood 2016, 127(21), 2569–2574. [Google Scholar] [CrossRef]
- Einsele, H.; Engelhardt, M.; Tapprich, C.; Müller, J.; Liebisch, P.; Langer, C.; Kropff, M.; Mügge, L.O.; Jung, W.; Wolf, H.H.; et al. Phase II study of bortezomib, cyclophosphamide and dexamethasone as induction therapy in multiple myeloma: DSMM XI trial. Br. J. Haematol. 2017, 179, 586–597. [Google Scholar] [CrossRef]
- Tanaka, K.; Toyota, S.; Akiyama, M.; Wakimoto, N.; Nakamura, Y.; Najima, Y.; Doki, N.; Kakihana, K.; Igarashi, A.; Kobayashi, T.; et al. Efficacy and Safety of a Weekly Cyclophosphamide-Bortezomib-Dexamethasone Regimen as Induction Therapy Prior to Autologous Stem Cell Transplantation in Japanese Patients with Newly Diagnosed Multiple Myeloma: A Phase 2 Multicenter Trial. Acta Haematol. 2019, 141, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.-n.; Fu, W.-j.; Wu, Y.; Dong, Y.-j.; Huang, Z.-x.; Wei, Y.-q.; Li, C.r.; Sun, C.-y.; Chen, Y.; Miao, H.-l.; et al. Doxycycline Combined With Bortezomib-Cyclophosphamide-Dexamethasone Chemotherapy for Newly Diagnosed Cardiac Light-Chain Amyloidosis: A Multicenter Randomized Controlled Trial. Circulation 2022, 145, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Palladini, G.; Sachchithanantham, S.; Milani, P.; Gillmore, J.; Foli, A.; Lachmann, H.; Basset, M.; Hawkins, P.; Merlini, G.; Wechalekar, A.D. A European collaborative study of cyclophosphamide, bortezomib, and dexamethasone in upfront treatment of systemic AL amyloidosis. Blood 2015, 126, 612–615. [Google Scholar] [CrossRef]
- Berdeja, J.; Savona, M.; Chu, L.; Essell, J.; Murphy, P.; Bauer, T.; Raefsky, E.; Boccia, R.V.; Flinn, I. Bendamustine, Bortezomib and Dexamethasone (BBD) As First-Line Treatment Of Patients (Pts) With Multiple Myeloma Who Are Not Candidates For High Dose Chemotherapy. Blood 2013, 122, 3193. [Google Scholar] [CrossRef]
- Mateos, M.V.; Oriol, A.; Rosiñol, L.; de Arriba, F.; Puig, N.; Martín, J.; Martínez-López, J.; Echeveste, M.A.; Sarrá, J.; Ocio, E.; et al. Bendamustine, bortezomib and prednisone for the treatment of patients with newly diagnosed multiple myeloma: results of a prospective phase 2 Spanish/PETHEMA trial. Haematologica 2013, 100, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Cavo, M.; Tacchetti, P.; Patriarca, F.; Petrucci, M.T.; Pantani, L.; Galli, M.; Di, R.F.; Crippa, C.; Zamagni, E.; Palumbo, A.; et al. Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. The Lancet 2010, 376, 2075–2085. [Google Scholar] [CrossRef]
- Rosiñol, L.; Oriol, A.; Teruel, A.I.; de la Guía, A.L.; Blanchard, M.J.; de la Rubia, J.; Granell, M.; Sampol, M.A.; Palomera, L.; González, Y.; et al. Bortezomib and thalidomide maintenance after stem cell transplantation for multiple myeloma: a PETHEMA/GEM trial. Leukemia 2017, 31, 1922–1927. [Google Scholar] [CrossRef]
- Ludwig, H.; Greil, R.; Masszi, T.; Spicka, I.; Shpilberg, O.; Hajek, R.; Dmoszynska, A.; Paiva, B.; Vidriales, M.B.; Esteves, G.; et al. Bortezomib, thalidomide and dexamethasone, with or without cyclophosphamide, for patients with previously untreated multiple myeloma: 5-year follow-up. Br. J. Haematol. 2015, 171, 344–354. [Google Scholar] [CrossRef]
- Durie, B.G.M.; Hoering, A.; Abidi, M.H.; Rajkumar, S.V.; Epstein, J.; Kahanic, S.P.; Thakuri, M.; Reu, F.; Reynolds, C.M.; Sexton, R.; et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. The Lancet 2017, 389, 519–527. [Google Scholar] [CrossRef]
- Rosiñol, L.; Oriol, A.; Ríos, R.; Sureda, A.; Blanchard, M.J.; Hernández, M.T.; Martínez-Martínez, R.; Moraleda, J.M.; Jarque, I.; Bargay, J.; et al. Bortezomib, lenalidomide, and dexamethasone as induction therapy prior to autologous transplant in multiple myeloma. Blood 2019, 134, 1337–1345. [Google Scholar] [CrossRef]
- Kumar, S.K.; Jacobus, S.J.; Cohen, A.D.; Weiss, M.; Callander, N.; Singh, A.K.; Parker, T.L.; Menter, A.; Yang, X.; Parsons, B.; et al. Carfilzomib or bortezomib in combination with lenalidomide and dexamethasone for patients with newly diagnosed multiple myeloma without intention for immediate autologous stem-cell transplantation (ENDURANCE): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2020, 21, 1317–1330. [Google Scholar] [CrossRef]
- Ailawadhi, S.; Hoering, A.; J Ye, C.; Lipe, B.; Chauncey, T.R.; Gowin, K.; Calverley, D.; Holstein, S.A.; Campagnaro, E.L.; Rosenthal, A.; et al. A Phase III Randomized Trial for Frail Newly Diagnosed Multiple Myeloma Patients Comparing Bortezomib- Lenalidomide-Dexamethasone (VRd-Lite followed by Len maintenance) with Daratumumab-Lenalidomide- Dexamethasone (DRd followed by Len+/- Dara Maintenance): SWOG S2209. Blood 2024, 144, 3381–3383. [Google Scholar] [CrossRef]
- Saj, F.; Nisha, Y.; Ganesan, P.; Kayal, S.; Kar, R.; Halanaik, D.; Dubashi, B. Efficacy and safety of pomalidomide, bortezomib, and dexamethasone combination chemotherapy for newly diagnosed multiple myeloma: POMACE Phase II Study. Blood Cancer J. 2023, 13, 45. [Google Scholar] [CrossRef]
- Laubach, J.; Nooka, A.K.; Cole, C.; O'Donnell, E.; Vij, R.; Usmani, S.Z.; Orloff, G.J.; Richter, J.R.; Redd, R.; DiPietro, H.; et al. An open-label, single arm, phase IIa study of bortezomib, lenalidomide, dexamethasone, and elotuzumab in newly diagnosed multiple myeloma. J. Clin. Oncol. 2017, 35, 8002. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Hoering, A.; Ailawadhi, S.; Sexton, R.; Lipe, B.; Hita, S.F.; Valent, J.; Rosenzweig, M.; Zonder, J.A.; Dhodapkar, M.; et al. Bortezomib, lenalidomide, and dexamethasone with or without elotuzumab in patients with untreated, high-risk multiple myeloma (SWOG-1211): primary analysis of a randomised, phase 2 trial. Lancet Hematol. 2021, 8, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Mai, E.K.; Goldschmidt, H.; Miah, K.; Bertsch, U.; Besemer, B.; Hänel, M.; Krzykalla, J.; Fenk, R.; Schlenzka, J.; Munder, M.; et al. Elotuzumab, lenalidomide, bortezomib, dexamethasone, and autologous haematopoietic stem-cell transplantation for newly diagnosed multiple myeloma (GMMG-HD6): results from a randomised, phase 3 trial. Lancet Haematol. 2024, 11, 101–113. [Google Scholar] [CrossRef]
- Nagarajan, C.; Tan, M.; Chen, Y.; Ooi, M.; De Mel, S.; Tso, A.; Ng, L.; Than, H.; Goh, Y.T.; Brian, GM; Durie, B.G.M.; et al. Daratumumab Bortezomib and Dexamethasone in Transplant Ineligible Newly Diagnosed Elderly Myeloma Patients - a Trial By Asian Myeloma Network. Blood 2023, 142, 6721–6723. [Google Scholar] [CrossRef]
- Shen, K.-n.; Gao, Y.-j.; Chang, L.; Zhang, L.; Cao, X.-x.; Tian, Z.; Wang, Y.-n.; Zhou, D.-b.; Li, J. Efficacy and safety of daratumumab plus bortezomib and dexamethasone in newly diagnosed Mayo 2004 stage IIIA or IIIB light-chain amyloidosis: a prospective phase II study. Haematologica 2024, 109, 2355–2358. [Google Scholar] [CrossRef]
- Mateos, M.V.; Dimopoulos, M.A.; Cavo, M.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; Kaplan, P; et al. Daratumumab plus Bortezomib, Melphalan, and Prednisone for Untreated Myeloma. N. Engl. J. Med. 2018, 378, 518–528. [Google Scholar] [CrossRef]
- Yimer, H.; Melear, J.; Faber, E.; Bensinger, W.I.; Burke, J.M.; Narang, M.; Stevens, D.; Gunawardena, S.; Lutska, Y.; Qi, K.; et al. Daratumumab, bortezomib, cyclophosphamide and dexamethasone in newly diagnosed and relapsed multiple myeloma: LYRA study. Br. J. Haematol. 2019, 185, 492–502. [Google Scholar] [CrossRef]
- Beksac, M.; Tuglular, T.; Gay, F.; Mina, R.; Katodritou, E.; Unal, A.; Cavo, M.; Ozsan, G.H.; Van Der Velden, V.H.J.; Beverloo, H.B.; et al. Treatment with Daratumumab Plus Bortezomib, Cyclophosphamide, and Dexamethasone May Result in Both Hematologic and Metabolic Complete Response to Achieve Long-Term Progression Free Survival Among Patients Presenting with Extra-Medullary Disease: A European Myeloma Network Study (EMN19). Blood 2023, 142, 1956–1958. [Google Scholar] [CrossRef]
- Mollee, P.; Reynolds, J.; Janowski, W.; Quach, H.; Campbell, P.; Gibbs, S.; Lee, S.; Lee, E.; Taylor, K.; Cochrane, T.; et al. Daratumumab, cyclophosphamide, bortezomib, and dexamethasone for transplant-ineligible myeloma: AMaRC 03-16. Blood Adv. 2024, 8, 3721–3730. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, M.; Efebera, Y.; Kastritis, E.; Blue, B.; Jamal, F.; Minnema, M.C.; Pericone, C.; Vasey, S.; Chen, Y.; Kotoulek, S.; et al. Phase 2 Study of Daratumumab (DARA) Plus Bortezomib, Cyclophosphamide, and Dexamethasone (D-VCd) in a Diverse Patient Population with Newly Diagnosed Amyloid Light Chain (AL) Amyloidosis: Aquarius. Blood 2023, 142, 4785–4787. [Google Scholar] [CrossRef]
- Hagen, P.; Sidana, S.; Parker, T.L.; Walker, B.A.; Sanchorawala, V.; Zonder, J.A.; Kourelis, T.; D’Souza, A.; Landau, H.J.; Rosenthal, A.; et al. A Phase III, Randomized Study of Daratumumab, Cyclophosphamide, Bortezomib and Dexamethasone (DARA-VCD) Induction Followed By Autologous Stem Cell Transplant or Dara-VCD Consolidation and Daratumumab Maintenance in Patients with Newly Diagnosed AL Amyloidosis. Blood 2024, 144, 3309.1–3309.2. [Google Scholar] [CrossRef]
- Roussel, M.; Moreau, P.; Hebraud, B.; Laribi, K.; Jaccard, A.; Dib, M.; Slama, B.; Dorvaux, V.; Royer, B.; Frenzel, L.; et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab for transplantation-eligible patients with newly diagnosed multiple myeloma (CASSIOPEIA): health-related quality of life outcomes of a randomised, open-label, phase 3 trial. Lancet Haematol. 2020, 7, e874-883. [Google Scholar] [CrossRef] [PubMed]
- Voorhees, P.M.; Sborov, D.W.; Laubach, J.; Kaufman, J.L.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D., Jr.; et al. Addition of daratumumab to lenalidomide, bortezomib, and dexamethasone for transplantation-eligible patients with newly diagnosed multiple myeloma (GRIFFIN): final analysis of an open-label, randomised, phase 2 trial. Lancet Haematol. 2023, 10, e825-837. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, P.; Dimopoulos, M.A.; Boccadoro, M.; Quach, H.; Ho, P.J.; Beksac, M.; Hulin, C.; Antonioli, E.; Leleu, X.; Mangiacavalli, S.; et al. Daratumumab, Bortezomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2024, 390, 301–313. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Facon, T.; Hungria, V.; Bahlis, N.J.; Venner, C.P.; Marc Braunstein, M.; Ludek Pour, L.; Martí, J.M.; Basu, S.; Cohen, Y.C.; et al. Daratumumab plus bortezomib, lenalidomide and dexamethasone for transplant-ineligible or transplant-deferred newly diagnosed multiple myeloma: the randomized phase 3 CEPHEUS trial. Nat. Med. 2025, 31, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M.F.; Hall, A.; Walker, K.; Sherborne, A.; De Tute, R.M.; Newnham, N.; Roberts, S.; Ingleson, E.; Bowles, K.; Garg, M.; et al. Daratumumab, Cyclophosphamide, Bortezomib, Lenalidomide, and Dexamethasone as Induction and Extended Consolidation Improves Outcome in Ultra-High-Risk Multiple Myeloma. J. Clin. Oncol. 2023, 41, 3945–3955. [Google Scholar] [CrossRef]
- Goldschmidt, H.; Mai, E.K.; Bertsch, U.; Fenk, R.; Nievergall, E.; Tichy, D.; Besemer, B.; Dürig, J.; Schroers, R.; von Metzler, I.; et al. Addition of isatuximab to lenalidomide, bortezomib, and dexamethasone as induction therapy for newly diagnosed, transplantation-eligible patients with multiple myeloma (GMMG-HD7): part 1 of an open-label, multicentre, randomised, active-controlled, phase 3 trial. Lancet Haematol. 2022, 9, e810-821. [Google Scholar] [CrossRef]
- Facon, T.; Dimopoulos, M.A.; Leleu, X.P.; Beksac, M.; Pour, L.; Hájek, R.; Liu, Z.; Jiri Minarik, J.; Moreau, P.; Romejko-Jarosinska, J.; et al. Isatuximab, Bortezomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2024, 391, 1597–1609. [Google Scholar] [CrossRef] [PubMed]
- Leleu, X.; Hulin, C.; Lambert, J.; Bobin, A.; Perrot, A.; Karlin, L.; Roussel, M.; Montes, L.; Cherel, B.; Chalopin, T.; et al. Isatuximab, lenalidomide, dexamethasone and bortezomib in transplant-ineligible multiple myeloma: the randomized phase 3 BENEFIT trial. Nat. Med. 2024, 30, 2235–2241. [Google Scholar] [CrossRef]
- Askeland, F.B.; Haukås, E.; Slørdahl, T.S.; Klostergaard, A.; Alexandersen, T.; Osnes, L.; Lysén, A.; Abdollahi, P.; Nielsen, L.K.; Hermansen, E.; et al. Isatuximab, bortezomib, lenalidomide, and limited dexamethasone in patients with transplant-ineligible multiple myeloma (REST): a multicentre, single-arm, phase 2 trial. Lancet Haematol. 2025, 12, e120-127. [Google Scholar] [CrossRef]

| Anti-clonal therapy |
NDMM |
NDAL |
||||||
| Year/ Authors |
Study | n | Name | Year/ Author |
Study | n | Name | |
| Vd | 2005 Jagannath S et al. [53] |
Phase II |
32 | - | 2014 Huang X et al. [60] |
Phase III Vdx2 & ASCT/ASCT |
28/28 | NCT01998503 |
| 2006 Harousseau JL et al. [54] |
Phase II |
48 | - | 2015 Sanchorawala V et al. [61] |
Phase II | 25 | NCT01083316 | |
| 2007 Rosiñol L et al. [55] |
Phase II |
40 | - | 2019 Minnema MC et al. [62] |
Phase II | 50 | HOVON 104 NTR3220 |
|
| 2010 Harousseau JL et al. [56] |
Phase III Vd/vAd |
121/121 | IFM 2005-01 | 2020 Landau H et al. [63] |
Phase II | 19 | NCT01383759 | |
| 2015 Girnius SK et al. [57] |
Phase II | 50 | NCT01090921 | - | ||||
| 2015 Niesvizky R et al. [58] |
Phase III Vd/VTd/VMp |
168/167/167 | UPFRONT NCT00507416 |
- | ||||
| VAd | 2009 Jakubowiak AJ et al. [64] |
Phase II | 40 | - | - | |||
| 2010 Palumbo A et al. [65] |
Phase II | 102 | - | - | ||||
| 2012 Sonneveld P et al. [66] |
Phase III VAd/vAd |
413/414 | HOVON-65/ GMMG-HD4 |
- | ||||
| VMp/VMd | 2008 San Miguel JF et al. [67] |
Phase III VMp/Mp |
344/338 | VISTA NCT00111319 |
2020 Kastritis E et al. [72] |
Phase III VMd/Md |
53/56 | EMN-03 NCT01277016 |
| 2010 Mateos MV et al. [68] |
Phase III VMp/VTp |
130/130 | GEM05 NCT00443235 |
- | ||||
| 2010 Palumbo A et al. [69] |
Phase III VMp/VMpT |
257/254 | GIMEMA-MM-03-05 NCT01063179 |
- | ||||
| 2016 Mateos MV et al. [70] |
Phase II VMp/Rd seq vs alt |
118/115 | GEM2010 NCT01237249 |
- | ||||
| 2025 Mateos MV et al. [71] |
Phase III VMp-Rd/KRd/ DKRd |
154/154/153 | GEM-2017FIT NCT03742297 |
- | ||||
| VCd | 2009 Reeder CB et al. [73] |
Phase II |
33 | - | 2022 Shen K-n et al. [80] |
NR VCd/VCddox |
55/56 | NCT03401372 |
| 2010 Bensinger WI et al. [74] |
Phase II VCd /VTd seq |
44 | - | - | ||||
| 2012 Kumar S et al. [75] |
Phase II VCd/VCd mod /VRd/VRCd |
33/17/42/48 | EVOLUTION NCT00507442 |
- | ||||
| 2015 Mai EK et al. [76] |
Phase III VCd/VAd |
251/251 | MM5-GMMG | - | ||||
| 2016 Moreau P et al. [77] |
Phase III VCd/VTd |
170/170 | IFM 2013-14 NCT01564537 |
- | ||||
| 2017 Einsele H et al. [78] |
Phase II |
414 | DSMM XI NCT00833560 |
- | ||||
| 2019 Tanaka et al. [79] | Phase II |
38 | - | - | ||||
| BVp | 2013 Berdeja J et al. [82] |
Phase II |
43 | - | - | |||
| 2015 Mateos MV et al. [83] |
Phase II |
60 | NCT01376401 | - | ||||
| VTd | 2010 Cavo M et al. [84] |
Phase III VTd/Td |
241/239 | NCT01134484 | - | |||
| 2012 Rosiñol L et al. [85] |
Phase III VTd/Td/QT+V |
56/56/57 | NCT00461747 | - | ||||
| 2015 Ludwig H et al. [86] |
Phase II VTd/VTCd |
49/49 | NCT00531453 | - | ||||
| VRd | 2017 Durie BGM et al. [87] |
Phase III VRd/Rd |
235/225 | SWOG S0777 NCT00644228 |
- | |||
| 2019 Rosiñol L et al. [88] |
Phase III |
458 | GEM2012 NCT01916252 |
- | ||||
| 2020 Kumar S et al. [89] |
Phase III VRd/KRd |
542/545 | ENDURANCE NCT01863550 |
- | ||||
| 2024 Ailawadhi S et al. [90] |
Phase III VRd/DRd |
459 | SWOG S2209 NCT05561387 |
- | ||||
| PVd | 2023 Saj F et al. [91] |
Phase II |
34 | POMACE | - | |||
| EloVRd | 2017 Laubach J et al. [92] |
Phase II |
41 | NCT02375555 | - | |||
| 2021 Usmani SZ et al. [93] |
Phase II EloVRd/VRd |
48/52 | SWOG-1211 NCT01668719 |
- | ||||
| 2024 Mai EK et al. [94] |
Phase III EloVRd/VRd |
279/280 | GMMG-HD6 NCT02495922 |
- | ||||
| DVd | 2023 Nagarajan C et al. [95] |
Phase II |
27 | AMN006 NCT03695744 |
2024 Shen K-n et al. [96] |
Phase II |
40 | NCT04474938 |
| DVMp | 2018 Mateos MV et al. [97] |
Phase III DVMp/VMp |
350/356 | ALCYONE NCT02195479 |
- | |||
| DVCd | 2019 Yimer et al. [98] |
Phase II |
86 | LYRA NCT02951819 |
2021 Kastritis E et al. [35] |
Phase III DVCd/VCd |
195/193 | ANDROMEDA NCT03201965 |
| 2023 Beksac M et al. [99] |
Phase II |
29 | EMN19 NCT04166565 |
2023 Rosenzweig M et al. [101] |
Phase II DVCd |
75 | AQUARIUS NCT05250973 | |
| 2024 Mollee P et al. [100] |
Phase II DVCd/VCd |
64/57 | AMaRC 03-16 ACTRN12617000202369 | 2024 Hagen P et al. [102] |
Phase III DVCd/DVCd-ASCT |
143/143 | SWOG S2213 NCT06022939 | |
| DVTd | 2020 Roussel M et al. [103] |
Phase III DVTd/VTd |
543/542 | CASSIOPEIA NCT02541383 |
- | |||
| DVRd | 2023 Voorhees PM et al. [104] |
Phase II DVRd/VRd |
104/103 | GRIFFIN NCT02874742 |
- | |||
| 2024 Sonneveld P et al. [105] |
Phase III DVRd/VRd |
355/354 | PERSEUS NCT03710603 |
- | ||||
| 2025 Usmani SZ et al. [106] |
Phase III DVRd/VRd |
197/198 | CEPHEUS NCT03652064 |
- | ||||
| DCVRd | 2023 Kaiser MT et al. [107] |
Phase II |
107 | OPTIMUM (MUKnine) NCT03188172 |
- | |||
| IsaVRd | 2022 Goldschmidt H et al. [108] |
Phase III IsaVRd/VRd |
331/329 | GMMG-HD7 NCT03617731 |
- | |||
| 2024 Facon T et al. [109] |
Phase III IsaVRd/VRd |
265/181 | IMROZ NCT03319667 |
- | ||||
| 2024 Leleu X et al. [110] |
Phase III IsaVRd/IsaRd |
135/135 | BENEFIT NCT04751877 |
- | ||||
| 2025 Askeland FB et al. [111] |
Phase II IsaVRd |
51 | REST NCT04939844 |
- | ||||
| Regimen | n (MM /AL) | Period MM | Period AL |
|---|---|---|---|
| Vd | 6/4 | 2005-2015 | 2014-2020 |
| VAd | 3/0 | 2009-2012 | - |
| VMp/VMd | 5/1 | 2008-2025 | 2020 |
| VCd | 7/1 | 2009-2019 | 2022 |
| BVp | 2/0 | 2013-2015 | - |
| VTd | 3/0 | 2010-2015 | - |
| VRd | 4/0 | 2017-2024 | - |
| PVd | 1/0 | 2023 | - |
| EloVRd | 3/0 | 2017-2024 | - |
| DVd | 1/1 | 2023 | 2024 |
| DVMp | 1/0 | 2018 | - |
| DVCd | 3/3 | 2019-2024 | 2021-2024 |
| DVTd | 1/0 | 2020 | - |
| DVRd | 3/0 | 2023-2025 | - |
| DCVRd | 1/0 | 2023 | - |
| IsaVRd | 4/0 | 2022-2025 | - |
| Total | 48/10 | 2005-2025 | 2014-2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).