Submitted:
08 January 2026
Posted:
23 January 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Waste Management at CATRE
2.2. Stoichiometric Calculations of Sanitary Waste Emission Factors
2.3. Emissions Balance
2.3.1. Reference Mass and Annual Extrapolation
2.3.2. Three Emission Scenarios Were Evaluated
- Scenario A – Anaerobic degradation without CH₄ capture
- 2.
- Scenario B – Anaerobic degradation with 75% CH₄ capture and combustion
- 3.
- Scenario C – Predominantly aerobic degradation (complete oxidation)
3. Results and Discussion
3.1. SW Generation
Statistical Analysis of Temporality
3.2. Limitations in Quantification
3.3. Emission Factors (EF) Calculated from SW
3.4. Emission Scenario
- Scenario A – Anaerobic degradation without CH₄ capture
- 2.
- Scenario B – Anaerobic degradation with 75% CH₄ capture and combustion
- 3.
- Scenario C – Predominantly aerobic degradation (complete oxidation)
- Scenario A represents complete anaerobic degradation without methane capture. Under this condition, emissions reached 7.89 t CO₂e yr⁻¹, the highest among the modeled scenarios due to uncontrolled methane CH₄ release.
- Scenario B assumes 75% methane capture and flaring, following IPCC recommendations for controlled landfill operations. This scenario resulted in emissions of 2.59 t CO₂e yr⁻¹, corresponding to a 67% reduction relative to Scenario A. The remaining 25% of methane, assumed to remain uncaptured, accounts for the residual climate impact.
- Scenario C, which assumes predominantly aerobic conditions, resulted in emissions of 0.943 t CO₂e yr⁻¹, representing an 88% reduction compared with Scenario A. Because aerobic degradation does not generate methane, emissions are limited to stoichiometrically released CO₂ released during oxidative decomposition.
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
| ARM | Annual reference mass |
| GHG | Greenhouse gases |
| MSW | Municipal solid waste |
| WWTP | Wastewater treatment plant |
| TP | Toilet paper |
| SW | Sanitary waste |
| DISS | Landfill sites |
| OFMSW | Organic fraction of municipal solid waste |
| HEI | Higher education institution |
| EF | Emission factors |
| GWP | Global Warming Potential |
| IPCC | Intergovernmental Panel on Climate Change |
| kg | kilogram |
| t | tonne |
| y | year |
| CO2e | Carbon dioxide equivalent |
| Gg | Gigagrams |
| Mt | Megatons |
References
- S. Kaza, L. C. . Yao, P. Bhada-Tata, and F. Van Woerden, “What a Waste 2.0: A Global Snapshot of Solid Waste Managment to 2050,” 2018.
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), “Diagnóstico Básico para la Gestión Integral de los Residuos 2020,” Ciudad de México, México, 2020.
- Secretaría de Recursos Naturales y Protección Ambiental del Estado de Tabasco, “Programa estatal de acción ante el cambio climático del estado de Tabasco,” 2011.
- S. Li, Z. Wu, Z. Wu, and G. Liu, “Enhancing fiber recovery from wastewater may require toilet paper redesign,” Journal of Cleaner Production, vol. 261, p. 121138, 2020. [CrossRef]
- K. F. Al, J. E. Bisanz, G. B. Gloor, G. Reid, and J. P. Burton, “Evaluation of sampling and storage procedures on preserving the community structure of stool microbiota: A simple at-home toilet-paper collection method,” Journal of Microbiological Methods, vol. 144, pp. 117–121, Jan. 2018. [CrossRef]
- C. Schönning et al., “Microbial risk assessment of local handling and use of human faeces,” Journal of Water and Health, vol. 5, no. 1, pp. 117–128, Mar. 2007. [CrossRef]
- R. Chen et al., “Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature,” Bioresource Technology, vol. 228, pp. 69–76, Mar. 2017. [CrossRef]
- J. Kim, J. Kim, and C. Lee, “Anaerobic co-digestion of food waste, human feces, and toilet paper: Methane potential and synergistic effect,” Fuel, vol. 248, pp. 189–195, Jul. 2019. [CrossRef]
- K. L. Bridle and J. B. Kirkpatrick, “An analysis of the breakdown of paper products (toilet paper, tissues and tampons) in natural environments, Tasmania, Australia,” Journal of Environmental Management, vol. 74, no. 1, pp. 21–30, Jan. 2005. [CrossRef]
- R. Clabeaux, M. Carbajales-Dale, D. Ladner, and T. Walker, “Assessing the carbon footprint of a university campus using a life cycle assessment approach,” Journal of Cleaner Production, vol. 273, p. 122600, 2020. [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC), “Waste,” in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Geneva, Switzerland, 2019.
- J. G. García-Arce, C. A. Pérez-Ramírez, and B. E. Gutiérrez-Barba, “Objetivos de desarrollo sustentable y funciones sustantivas en las instituciones de educación superior,” Actual. Investig. Educ., vol. 2, p. 045012, 2021.
- A. Cortes, L. dos Muchangos, K. J. Tabornal, and H. D. Tolabing, “Impact of the COVID-19 pandemic on the carbon footprint of a Philippine university,” Environmental Research: Infrastructure and Sustainability, vol. 2, no. 4, p. 045012, 2022. [CrossRef]
- B. Ridhosari and A. Rahman, “Carbon footprint assessment at Universitas Pertamina from the scope of electricity, transportation, and waste generation: Toward a green campus and promotion of environmental sustainability,” Journal of Cleaner Production, vol. 246, p. 119172, Feb. 2020. [CrossRef]
- M. Varón-Hoyos, J. Osorio-Tejada, and T. Morales-Pinzón, “Carbon footprint of a university campus from Colombia,” Carbon Management, vol. 12, no. 1, pp. 93–107, 2021. [CrossRef]
- J. Cooper et al., “The Carbon Footprint of a UK Chemical Engineering Department – The Case of Imperial College London,” Procedia CIRP, vol. 116, pp. 444–449, 2023. [CrossRef]
- T. C. M. Letete, N. W. Mungwe, M. Guma, and A. Marquard, “Carbon footprint of the University of Cape Town,” Journal of Energy in Southern Africa, vol. 22, no. 2, pp. 2–12, May 2011. [CrossRef]
- I. Ullah, I. ud Din, U. Habiba, U. Noreen, and M. Hussain, “Carbon footprint as an environmental sustainability indicator for a higher education institution,” International Journal of Global Warming, vol. 20, no. 4, p. 277, 2020. [CrossRef]
- H. Kamyab et al., “Greenhouse Gas Emission of Organic Waste Composting: A Case Study of Universiti Teknologi Malaysia Green Campus Flagship Project,” Jurnal Teknologi, vol. 74, no. 4, May 2015. [CrossRef]
- S. Y. Guvenc, S. Canikli, E. Can-Güven, G. Varank, and H. E. Akbas, “The carbon footprint of a university campus. Case study of Yildiz Technical University,Davutpaşa Campus, Turkey,” Visions for Sustainability, vol. 2023, no. 20, pp. 189–221, 2023.
- G. Hernández Gerónimo, J. R. Laines Canepa, I. Ávila Lázaro, and J. A. Sosa Olivier, “Cálculos estequiométricos de factores de emisión para estimar emisiones fugitivas de gases de efecto invernadero en un centro de acopio de residuos sólidos,” Revista Internacional de Contaminación Ambiental, vol. 0, pp. 165–179, 2022. [CrossRef]
- G. Tchobanoglous, H. Theisen, and S. Vigil, Gestión Integral de Residuos Sólidos. McGRAW-HILL, 1994.
- Q. Aguilar-Virgen, P. Taboada-González, E. Baltierra-Trejo, and L. Marquez-Benavides, “Cutting GHG emissions at student housing in Central Mexico through solid waste management,” Sustainability (Switzerland), vol. 9, no. 8, pp. 1–12, 2017. [CrossRef]
- D. P. Smyth, A. L. Fredeen, and A. L. Booth, “Reducing solid waste in higher education: The first step towards ‘greening’ a university campus,” Resources, Conservation and Recycling, vol. 54, no. 11, pp. 1007–1016, Sep. 2010. [CrossRef]




| a | Analytics (%) | Elementals (%) | |||||||||||||
| Moisture | Volatile Matter | Fixed Carbon | Ash | C | H | O | N | S | |||||||
| 9.78 ± 7.17 | 91.28 ± 1.42 | 2.39 ± 1.10 | 6.31 ± 1.53 | 42.08 ± 0.03 | 6.26 ± 0.01 | 50.44 | 0.96 ± 0.08 | 0.25 ± 0.02 | |||||||
| b | Process | Chemical Formulas | Condition | ||||||||||||
| Aerobic | Without sulfur; with water | ||||||||||||||
| Anaerobic | With sulfur; with water | ||||||||||||||
| c | Theoretical Gas Production (CO₂ and CH₄) and Their CO₂e Equivalence | ||||||||||||||
| Process | GEI | Generated (t/year) | PCA [22] | t CO2e | tCO2e year-1 | ||||||||||
| Aerobic | CO2 | 0.9429 | 1 | 0.9429 | 0.9429 | ||||||||||
| Anaerobic | CO2 | 0.7387 | 1 | 0.7387 | 7.8870 | ||||||||||
| CH4 | 0.2553 | 28 | 7.1482 | ||||||||||||
| Process | EF (kg CO2e t-1 SW) |
|---|---|
| Aerobic | 841.95 |
| Anaerobic | 7,041.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
