Traveling wave ultrasonic motors (TWUMs) are critical components in precision systems, their performance is susceptible to degradation under dynamic disturbances in harsh operating environments. This paper presents a monolithic U-shaped rotor designed to intrinsically achieve quasi-zero stiffness (QZS). Unlike conventional QZS systems that rely on assembling discrete positive and negative stiffness elements, the proposed design generates the target mechanical characteristic through the tailored nonlinear response of a unified U-shaped structure, thereby improving preload stability. Through exploring the critical parameters of the rotor cross-section, the finite element method (FEM) is employed to optimize the geometry configuration and characterize the mechanical performances. Simulation results show that the QZS behavior, demonstrating a stable force plateau of 320 ± 10 N across a 0.7 mm displacement range. A maximum von Mises stress of 788 MPa is obtained, well within the material's safety margin, thereby ensuring the structural integrity. Experimental tests validate the effectiveness of the proposed design. This compact, monolithic U-shaped rotor provides a robust and reliable QZS solution, demonstrating significant potential for enhancing the stability of TWUMs in applications prone to harsh environments such as extreme high and low temperatures, thermal cycling conditions, shock environments.