Submitted:
14 January 2026
Posted:
16 January 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Moral Statement
2.2. Preparation of CAP and LPS
2.3. Animal and Experimental Design
2.4. Sample Collection
2.5. Biochemical Assay of Serum Samples
2.6. Determination of Liver Metabolite Concentration and Enzyme Activity
2.7. RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction (PCR) Analysis
2.8. Protein Extraction and Western Blot Assay
2.9. Liver Metabolites Analysis
2.10. Statistical Analysis
3. Results
3.1. Changes in FA Metabolites and the Corresponding Enzymes in Serum and Liver
3.2. Gene Expression Involved in FA Uptake, Synthesis and Oxidation
3.3. Protein Expression Related to FA Transport and Metabolism
3.4. Changes in Cholesterol and BA Metabolites in Serum and Liver
3.5. Expression of Genes Related to Cholesterol and BA Metabolism
3.6. Protein Expression and Enzyme Activity Involved in Cholesterol Metabolism and BA Synthesis
3.7. Effects of Capsaicin on Hepatic Metabolites in Immune Stressed Piglets

3.8. Correlation Analysis Between Enzyme Activity and Product Level Related to Lipid Metabolism in Liver of Piglets and Differential Metabolites
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Yin, J.; Ren, W.; Liu, G.; Duan, J.; Yang, G.; Wu, L.; Li, T.; Yin, Y. Birth oxidative stress and the development of an antioxidant system in newborn piglets. Free Radic Res 2013, 47, 1027–1035. [Google Scholar] [CrossRef]
- Varshney, V.; Kumar, A.; Parashar, V.; Kumar, A.; Goyal, A.; Garabadu, D. Therapeutic Potential of Capsaicin in Various Neurodegenerative Diseases with Special Focus on Nrf2 Signaling. Curr Pharm Biotechnol 2024, 25, 1693–1707. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Peng, Y.; Zhang, Y.; Liu, Y.; Liu, Y.; Yin, Y. Research progress on anti-stress nutrition strategies in swine. Anim Nutr 2023, 13, 342–360. [Google Scholar] [CrossRef]
- Cao, S.; Hou, L.; Sun, L.; Gao, J.; Gao, K.; Yang, X.; Jiang, Z.; Wang, L. Intestinal morphology and immune profiles are altered in piglets by early-weaning. Int Immunopharmacol 2022, 105, 108520. [Google Scholar] [CrossRef]
- Long, S.; Liu, S.; Wang, J.; Mahfuz, S.; Piao, X. Natural capsicum extract replacing chlortetracycline enhances performance via improving digestive enzyme activities, antioxidant capacity, anti-inflammatory function, and gut health in weaned pigs. Anim Nutr 2021, 7, 305–314. [Google Scholar] [CrossRef]
- Moeser, A.J.; Pohl, C.S.; Rajput, M. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Anim Nutr 2017, 3, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, H.; Wang, S.; Tu, Z.; Zhang, L.; Wang, X.; Hou, Y.; Wang, C.; Chen, J.; Liu, Y. Flaxseed Oil Attenuates Intestinal Damage and Inflammation by Regulating Necroptosis and TLR4/NOD Signaling Pathways Following Lipopolysaccharide Challenge in a Piglet Model. Mol Nutr Food Res 2018, 62, e1700814. [Google Scholar] [CrossRef] [PubMed]
- Le Dividich, J.; Sève, B. Effects of underfeeding during the weaning period on growth, metabolism, and hormonal adjustments in the piglet. Domest Anim Endocrinol 2000, 19, 63–74. [Google Scholar] [CrossRef]
- Davis, B.L.; Fraser, J.N.; Burkey, T.E.; Skjolaas, K.A.; Dritz, S.S.; Johnson, B.J.; Minton, J.E. Oral inoculation with Salmonella enterica serovar Typhimurium or Choleraesuis promotes divergent responses in the somatotropic growth axis of swine. J Anim Sci 2010, 88, 1642–1648. [Google Scholar] [CrossRef]
- Fenton, J.P.; Roehrig, K.L.; Mahan, D.C.; Corley, J.R. Effect of swine weaning age on body fat and lipogenic activity in liver and adipose tissue. J Anim Sci 1985, 60, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Upadhaya, S.D.; Kim, I.H. The Impact of Weaning Stress on Gut Health and the Mechanistic Aspects of Several Feed Additives Contributing to Improved Gut Health Function in Weanling Piglets-A Review. Animals (Basel) 2021, 11. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Y.; Wen, Z.; Jiang, X.; Ma, X.; Han, X. Weaning Stress Perturbs Gut Microbiome and Its Metabolic Profile in Piglets. Sci Rep 2018, 8, 18068. [Google Scholar] [CrossRef]
- Spreeuwenberg, M.A.; Verdonk, J.M.; Gaskins, H.R.; Verstegen, M.W. Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning. J Nutr 2001, 131, 1520–1527. [Google Scholar] [CrossRef]
- Srinivasan, K. Biological Activities of Red Pepper (Capsicum annuum) and Its Pungent Principle Capsaicin: A Review. Crit Rev Food Sci Nutr 2016, 56, 1488–1500. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Huang, H.H.; Li, Q.C.; Zhan, F.B.; Wang, L.B.; He, T.; Yang, C.H.; Wang, Y.; Zhang, Y.; Quan, Z.X. Capsaicin Reduces Cancer Stemness and Inhibits Metastasis by Downregulating SOX2 and EZH2 in Osteosarcoma. Am J Chin Med 2023, 51, 1041–1066. [Google Scholar] [CrossRef]
- Mondal, A.; Banerjee, S.; Terang, W.; Bishayee, A.; Zhang, J.; Ren, L.; da Silva, M.N.; Bishayee, A. Capsaicin: A chili pepper bioactive phytocompound with a potential role in suppressing cancer development and progression. Phytother Res 2024, 38, 1191–1223. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Wang, H.; Liu, S.; Zhang, M.; Xie, Y.; Liu, X. Capsaicin regulates lipid metabolism through modulation of bile acid/gut microbiota metabolism in high-fat-fed SD rats. Food Nutr Res 2022, 66. [Google Scholar] [CrossRef]
- Yang, S.; Liu, L.; Meng, L.; Hu, X. Capsaicin is beneficial to hyperlipidemia, oxidative stress, endothelial dysfunction, and atherosclerosis in Guinea pigs fed on a high-fat diet. Chem Biol Interact 2019, 297, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Li, S.; Meng, Y.; Zhao, Q.; Zhang, Y.; Suonan, Z.; Sun, Y.; Shen, Q.; Liao, X.; Xue, Y. Capsaicin Ameliorates High-Fat Diet-Induced Atherosclerosis in ApoE(-/-) Mice via Remodeling Gut Microbiota. Nutrients 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Tong, L.; Ao, Y.; Zhang, G.; Liu, Y.; Zhang, H. Novel design of NIR-triggered plasmonic nanodots capped mesoporous silica nanoparticles loaded with natural capsaicin to inhibition of metastasis of human papillary thyroid carcinoma B-CPAP cells in thyroid cancer chemo-photothermal therapy. J Photochem Photobiol B 2019, 197, 111534. [Google Scholar] [CrossRef]
- Bouter, K.E.; van Raalte, D.H.; Groen, A.K.; Nieuwdorp, M. Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction. Gastroenterology 2017, 152, 1671–1678. [Google Scholar] [CrossRef]
- Niu, X.; Ding, Y.; Chen, S.; Gooneratne, R.; Ju, X. Effect of Immune Stress on Growth Performance and Immune Functions of Livestock: Mechanisms and Prevention. Animals (Basel) 2022, 12. [Google Scholar] [CrossRef]
- Xu, S.S.; Wang, N.; Huang, L.; Zhang, X.L.; Feng, S.T.; Liu, S.S.; Wang, Y.; Liu, Z.G.; Wang, B.Y.; Wu, T.W.; et al. Changes in the Mucosa-Associated Microbiome and Transcriptome across Gut Segments Are Associated with Obesity in a Metabolic Syndrome Porcine Model. Microbiol Spectr 2022, 10, e0071722. [Google Scholar] [CrossRef]
- Kersten, S. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep 2001, 2, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Rangwala, S.M.; Bailey, S.T.; Krakow, S.L.; Reginato, M.J.; Lazar, M.A. Interdomain communication regulating ligand binding by PPAR-gamma. Nature 1998, 396, 377–380. [Google Scholar] [CrossRef]
- Björntorp, P.; Bergman, H.; Varnauskas, E. Plasma free fatty acid turnover rate in obesity. Acta Med Scand 1969, 185, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Boden, G. Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin resistance and type 2 diabetes. Exp Clin Endocrinol Diabetes 2003, 111, 121–124. [Google Scholar] [CrossRef]
- Carlsson, M.; Wessman, Y.; Almgren, P.; Groop, L. High levels of nonesterified fatty acids are associated with increased familial risk of cardiovascular disease. Arterioscler Thromb Vasc Biol 2000, 20, 1588–1594. [Google Scholar] [CrossRef] [PubMed]
- Boden, G. Obesity and free fatty acids. Endocrinol Metab Clin North Am 2008, 37, 635–646, viii-ix. [Google Scholar] [CrossRef]
- März, W.; Kleber, M.E.; Scharnagl, H.; Speer, T.; Zewinger, S.; Ritsch, A.; Parhofer, K.G.; von Eckardstein, A.; Landmesser, U.; Laufs, U. HDL cholesterol: reappraisal of its clinical relevance. Clin Res Cardiol 2017, 106, 663–675. [Google Scholar] [CrossRef]
- Wasan, K.M.; Brocks, D.R.; Lee, S.D.; Sachs-Barrable, K.; Thornton, S.J. Impact of lipoproteins on the biological activity and disposition of hydrophobic drugs: implications for drug discovery. Nat Rev Drug Discov 2008, 7, 84–99. [Google Scholar] [CrossRef]
- Santos-Gallego, C.G.; Giannarelli, C.; Badimón, J.J. Experimental models for the investigation of high-density lipoprotein-mediated cholesterol efflux. Curr Atheroscler Rep 2011, 13, 266–276. [Google Scholar] [CrossRef]
- Chiang, J.Y. Bile acid metabolism and signaling. Compr Physiol 2013, 3, 1191–1212. [Google Scholar] [CrossRef]
- Hofmann, A.F. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 1999, 159, 2647–2658. [Google Scholar] [CrossRef]
- Fuchs, C.D.; Trauner, M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol 2022, 19, 432–450. [Google Scholar] [CrossRef] [PubMed]
- Perino, A.; Demagny, H.; Velazquez-Villegas, L.; Schoonjans, K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol Rev 2021, 101, 683–731. [Google Scholar] [CrossRef]
- Fuchs, C.D.; Simbrunner, B.; Baumgartner, M.; Campbell, C.; Reiberger, T.; Trauner, M. Bile acid metabolism and signalling in liver disease. J Hepatol 2025, 82, 134–153. [Google Scholar] [CrossRef] [PubMed]
- Connelly, P.W.; Hegele, R.A. Hepatic lipase deficiency. Crit Rev Clin Lab Sci 1998, 35, 547–572. [Google Scholar] [CrossRef]
- Perret, B.; Mabile, L.; Martinez, L.; Tercé, F.; Barbaras, R.; Collet, X. Hepatic lipase: structure/function relationship, synthesis, and regulation. J Lipid Res 2002, 43, 1163–1169. [Google Scholar] [CrossRef]
- Shen, M.; Xie, Z.; Jia, M.; Li, A.; Han, H.; Wang, T.; Zhang, L. Effect of Bamboo Leaf Extract on Antioxidant Status and Cholesterol Metabolism in Broiler Chickens. Animals (Basel) 2019, 9. [Google Scholar] [CrossRef]
- Shen, M.M.; Zhang, L.L.; Chen, Y.N.; Zhang, Y.Y.; Han, H.L.; Niu, Y.; He, J.T.; Zhang, Y.L.; Cheng, Y.F.; Wang, T. Effects of bamboo leaf extract on growth performance, meat quality, and meat oxidative stability in broiler chickens. Poult Sci 2019, 98, 6787–6796. [Google Scholar] [CrossRef]
- Zhai, L.; Ning, Z.W.; Huang, T.; Wen, B.; Liao, C.H.; Lin, C.Y.; Zhao, L.; Xiao, H.T.; Bian, Z.X. Cyclocarya paliurus Leaves Tea Improves Dyslipidemia in Diabetic Mice: A Lipidomics-Based Network Pharmacology Study. Front Pharmacol 2018, 9, 973. [Google Scholar] [CrossRef] [PubMed]
- Mashek, D.G. Hepatic fatty acid trafficking: multiple forks in the road. Adv Nutr 2013, 4, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Koo, S.H. Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis. Clin Mol Hepatol 2013, 19, 210–215. [Google Scholar] [CrossRef]
- Doege, H.; Baillie, R.A.; Ortegon, A.M.; Tsang, B.; Wu, Q.; Punreddy, S.; Hirsch, D.; Watson, N.; Gimeno, R.E.; Stahl, A. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology 2006, 130, 1245–1258. [Google Scholar] [CrossRef]
- Falcon, A.; Doege, H.; Fluitt, A.; Tsang, B.; Watson, N.; Kay, M.A.; Stahl, A. FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase. Am J Physiol Endocrinol Metab 2010, 299, E384–E393. [Google Scholar] [CrossRef]
- Bougarne, N.; Weyers, B.; Desmet, S.J.; Deckers, J.; Ray, D.W.; Staels, B.; De Bosscher, K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev 2018, 39, 760–802. [Google Scholar] [CrossRef]
- Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 2007, 7, 763–777. [Google Scholar] [CrossRef]
- Numa, S.; Nakanishi, S.; Hashimoto, T.; Iritani, N.; Okazaki, T. Role of acetyl coenzyme A carboxylase in the control of fatty acid synthesis. Vitam Horm 1970, 28, 213–243. [Google Scholar] [CrossRef]
- McFie, P.J.; Chumala, P.; Katselis, G.S.; Stone, S.J. DGAT2 stability is increased in response to DGAT1 inhibition in gene edited HepG2 cells. Biochim Biophys Acta Mol Cell Biol Lipids 2021, 1866, 158991. [Google Scholar] [CrossRef]
- Hong, C.; Tontonoz, P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov 2014, 13, 433–444. [Google Scholar] [CrossRef]
- Endo-Umeda, K.; Makishima, M. Liver X Receptors Regulate Cholesterol Metabolism and Immunity in Hepatic Nonparenchymal Cells. Int J Mol Sci 2019, 20. [Google Scholar] [CrossRef]
- Gao, Q.; Jia, Y.; Yang, G.; Zhang, X.; Boddu, P.C.; Petersen, B.; Narsingam, S.; Zhu, Y.J.; Thimmapaya, B.; Kanwar, Y.S.; et al. PPARα-Deficient ob/ob Obese Mice Become More Obese and Manifest Severe Hepatic Steatosis Due to Decreased Fatty Acid Oxidation. Am J Pathol 2015, 185, 1396–1408. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.Y.; Pan, J.; Chu, R.; Lee, D.; Kluckman, K.D.; Usuda, N.; Singh, I.; Yeldandi, A.V.; Rao, M.S.; Maeda, N.; et al. Hepatocellular and hepatic peroxisomal alterations in mice with a disrupted peroxisomal fatty acyl-coenzyme A oxidase gene. J Biol Chem 1996, 271, 24698–24710. [Google Scholar] [CrossRef]
- Knottnerus, S.J.G.; Bleeker, J.C.; Wüst, R.C.I.; Ferdinandusse, S.; I.J., L; Wijburg, F.A.; Wanders, R.J.A.; Visser, G.; Houtkooper, R.H. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord 2018, 19, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Zhu, Y.; Deng, C.; Liang, Z.; Chen, J.; Chen, Y.; Wang, X.; Liu, Y.; Tian, Y.; Yang, Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther 2024, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Schlaepfer, I.R.; Joshi, M. CPT1A-mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology 2020, 161. [Google Scholar] [CrossRef]
- Sadana, P.; Zhang, Y.; Song, S.; Cook, G.A.; Elam, M.B.; Park, E.A. Regulation of carnitine palmitoyltransferase I (CPT-Ialpha) gene expression by the peroxisome proliferator activated receptor gamma coactivator (PGC-1) isoforms. Mol Cell Endocrinol 2007, 267, 6–16. [Google Scholar] [CrossRef]
- Finck, B.N.; Kelly, D.P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 2006, 116, 615–622. [Google Scholar] [CrossRef]
- Ko, C.W.; Qu, J.; Black, D.D.; Tso, P. Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 2020, 17, 169–183. [Google Scholar] [CrossRef]
- Wang, B.; Tontonoz, P. Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol 2018, 14, 452–463. [Google Scholar] [CrossRef]
- Yu, L.; York, J.; von Bergmann, K.; Lutjohann, D.; Cohen, J.C.; Hobbs, H.H. Stimulation of cholesterol excretion by the liver X receptor agonist requires ATP-binding cassette transporters G5 and G8. J Biol Chem 2003, 278, 15565–15570. [Google Scholar] [CrossRef]
- Horton, J.D.; Shah, N.A.; Warrington, J.A.; Anderson, N.N.; Park, S.W.; Brown, M.S.; Goldstein, J.L. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A 2003, 100, 12027–12032. [Google Scholar] [CrossRef] [PubMed]
- Zanotti, I.; Dall'Asta, M.; Mena, P.; Mele, L.; Bruni, R.; Ray, S.; Del Rio, D. Atheroprotective effects of (poly)phenols: a focus on cell cholesterol metabolism. Food Funct 2015, 6, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Yang, H.; Song, B.L. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 2020, 21, 225–245. [Google Scholar] [CrossRef]
- Zhang, X.; Yun, Y.; Lai, Z.; Ji, S.; Yu, G.; Xie, Z.; Zhang, H.; Zhong, X.; Wang, T.; Zhang, L. Supplemental Clostridium butyricum modulates lipid metabolism by reshaping the gut microbiota composition and bile acid profile in IUGR suckling piglets. J Anim Sci Biotechnol 2023, 14, 36. [Google Scholar] [CrossRef]
- Fleishman, J.S.; Kumar, S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, S.; Schwarz, M.; Frykman, P.K.; Herz, J.; Russell, D.W. Disruption of cholesterol 7alpha-hydroxylase gene in mice. I. Postnatal lethality reversed by bile acid and vitamin supplementation. J Biol Chem 1996, 271, 18017–18023. [Google Scholar] [CrossRef]
- Russell, D.W. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 2003, 72, 137–174. [Google Scholar] [CrossRef]
- Ding, L.; Yang, L.; Wang, Z.; Huang, W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm Sin B 2015, 5, 135–144. [Google Scholar] [CrossRef]
- Fu, X.; Menke, J.G.; Chen, Y.; Zhou, G.; MacNaul, K.L.; Wright, S.D.; Sparrow, C.P.; Lund, E.G. 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J Biol Chem 2001, 276, 38378–38387. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yang, Z.; Gan, H.; Wang, Y.; Li, C.; Gao, Y. Investigation into potential mechanisms of metabolic syndrome by integrative analysis of metabolomics and proteomics. PLoS One 2022, 17, e0270593. [Google Scholar] [CrossRef] [PubMed]




| Items | Content | |
|---|---|---|
| 28-41d | 42-62d | |
| Ingredient (%) | ||
| Maize (first-grade) | 36.25 | — |
| Maize (second-grade) | — | 33.50 |
| Wheat | — | 26.00 |
| Barley | — | 15.00 |
| Wheat flour (first-grade) | 15.00 | — |
| Broken rice | 20.00 | — |
| Full-fat rice bran | — | 6.00 |
| Extruded full-fat soybean(35%) | 2.50 | — |
| Soybean meal (46%) | 13.00 | 15.00 |
| Fermented soybean meal(50%) | 3.00 | — |
| Super steam fish meal (67%) | 1.25 | — |
| Glucose | 2.00 | — |
| Soybean oil | 1.00 | 0.50 |
| Premix1 | 6.00 | 4.00 |
| Total | 100.00 | 100.00 |
| Nutrient levels2 | ||
| Digestible energy (MJ/kg) | 15.27 | 13.41 |
| Crude protein (%) | 17.51 | 15.95 |
| Calcium (%) | 0.65 | 0.63 |
| Total phosphorus (%) | 0.38 | 0.38 |
| Crude fiber (%) | 2.06 | 2.76 |
| Crude ash (%) | 4.43 | 4.89 |
| SID Lysine (%) | 1.20 | 1.00 |
| Gene | Primer sequence (5’→3’) | Accession numbers | Size, bp |
|---|---|---|---|
| ABCA1 | F: CGTCTCCGCTATCTCCAACC R: CACAAAGGCTCCCTCTCTGG |
NM_001317080.1 | 121 |
| ABCG5 | F: CGTGTGCTACTGGACTCTGG R: ACCACACTGTTGACCACGTT |
XM_021087571.1 | 150 |
| ABCG8 | F: CCTTCCTCCGATGGTGCTTT R: CCATGGCATTGAGGATTGCG |
XM_021087570.1 | 120 |
| ACACA | F: GCCATGTTATTGCTGCTCGG R: ATTCATGAAGTCCGCCTGCA |
NM_001114269.1 | 147 |
| ACAT2 | F: AAGATCAGGACAGGCTTGCC R: GCATTAGCTGGGGTGACTGT |
XM_001928345.4 | 226 |
| BSEP | F: TATTGCTCGGGCCATCGTAC R: CCGACCTTCTCTGGCTTTGT |
XM_003133457.5 | 121 |
| CD36 | F: CTGGCCGTGTTTGGAGGTAT R: TCCGTGCCTGTTTTAACCCA |
XM_021102279.1 | 125 |
| CPT1A | F: TGGTGTCCAAATACCTCGCC R: CTCCGCTCGACACATACTCC |
NM_001129805.1 | 144 |
| CYP27A1 | F: CCTTCGTCAGATCTGTCGGG R: ATCCAGGTATCGCCTCCAGT |
NM_001243304.1 | 104 |
| CYP7A1 | F: AGCATTGACCCCAGTGATGG R: GGGGTCTCAGGACAAGTTGG |
KP687249.1 | 130 |
| DGAT1 | F: TACTACTTCCTCCTGGCCCC R: TGCAGCTGGATGAGGAACAG |
NM_214051.1 | 119 |
| DGAT2 | F: GGGTCCTGTCTTTCCTCGTG R: CGCCAGCCAAGTGAAGTAGA |
NM_001160080.1 | 107 |
| FABP2 | F: GCCTGGAAGATAGACCGCAA R: CCCAGTGAGTTCAGTTCCGT |
NM_001031780.1 | 228 |
| FABP4 | F: ATGGCCAAACCCAACCTGAT R: CCCACTTCTGCACCTGTACC |
NM_001002817.1 | 190 |
| FATP4 | F: TGAAGGTGAAGGCCAAGGTC R: CACGCTGCTCGAGTAGTCAT |
JX103441.1 | 164 |
| FFAR3 | F: CCTGGTGTGCATACTCAGCA R: CCCAAAGCAGACGAGGAAGT |
JX566878.1 | 100 |
| FXR | F: TGACAAAGACGACCCGACTG R: AAACCTTTGCACCCCTCACA |
KF597010.1 | 127 |
| GAPDH | F: GGAGAACGGGAAGCTTGTCA R: GCCTTCTCCATGGTCGTGAA |
XM_021091114.1 | 138 |
| HMGCR | F: AAAGGAGGCATTCGACAGCA R: TCACCTGACCTGGACTGGAA |
NM_001122988.1 | 105 |
| LXRα | F: ACAAAAGCGGAAAAAGGGGC R: TTGATGACACTGCGACGGAA |
AB254405.1 | 141 |
| MDR3 | F: AACGCAGACTTGATCGTGGT R: GGACGCTGACCATGGAGAAA |
XM_013989596 | 106 |
| MRP2 | F: TCCTACGAGGTGACAGAGGG R: GTCTCTAGATCCACCGCAGC |
XM_021073710.1 | 134 |
| MRP3 | F: GCTGGAGAACCTGAAGAACG R: TCAGGCTCCTCCTCATTCTC |
NM_001164723.1 | 121 |
| MRP4 | F: GCAGAAGCTGGAGAAGATGG R: TCCTCCTCATTCTCCTCCTG |
NM_001352764.1 | 124 |
| NPC1L | F: GTCCCCTCCTCTCTGGTGAT R: GGTCAGGGCTCCTAGGAAGA |
XM_005673340.3 | 219 |
| NTCP | F: GCTGCTGCTATCTTCTGCTT R: CCAGGAGAAGGTGAAGGTGA |
NM_001128475.1 | 128 |
| PPARα | F: GCAATAACCCGCCTTTCGTC R: CTCCTTGTTCTGGATGCCGT |
NM_001044526.1 | 101 |
| SCD1 | F: AGAATGGAGGGGGCAAGTTG R: GGGCCCTCCTTATCCTGGTA |
NM_213781.1 | 109 |
| Items | Group | P value | |||
|---|---|---|---|---|---|
| CON | LPS | LCA | NC vs LPS | LPS vs LCA | |
| Serum | |||||
| TG, mmol/L | 0.62 ± 0.06 | 1.16 ± 0.18 | 0.70 ± 0.07 | 0.013 | 0.033 |
| NEFA, μmol/L | 47.76 ± 6.34 | 306.52 ± 51.83 | 215.14 ± 29.30 | 0.002 | 0.147 |
| FABP4, ng/mL | 34.00 ± 0.75 | 32.13 ± 0.3 | 34.30 ± 0.63a | 0.045 | 0.008 |
| Liver | |||||
| TG, μmol/gprot | 41.89 ± 3.07 | 55.52 ± 2.67 | 44.59 ± 3.14 | 0.005 | 0.019 |
| NEFA, mmol/gprot | 0.61 ± 0.03 | 1.01 ± 0.13 | 0.66 ± 0.05 | 0.019 | 0.036 |
| LPL, U/gprot | 184.66 ± 20.56 | 132.94 ± 20.70 | 211.04 ± 19.03 | 0.098 | 0.015 |
| HL, U/gprot | 93.79 ± 16.75 | 92.22 ± 7.08 | 161.75 ± 9.82 | 0.933 | < 0.001 |
| TL, U/gprot | 278.46 ± 33.41 | 225.17 ± 23.51 | 372.80 ± 24.40 | 0.213 | 0.001 |
| 项目Items | 分组 Group | P值 P value | |||||||
|---|---|---|---|---|---|---|---|---|---|
| CON | LPS | LCA | NC vs. LPS | LPS vs. LCA | |||||
| Serum | |||||||||
| TC, mmol/L | 2.43 ± 0.05 | 2.15 ± 0.07 | 1.81 ± 0.04 | 0.07 | 0.01 | ||||
| HDL-C, mmol/L | 1.08 ± 0.07 | 0.54 ± 0.06 | 0.61 ± 0.04 | < 0.001 | 0.323 | ||||
| LDL-C, mmol/L | 1.50 ± 0.04 | 1.79 ± 0.19 | 1.19 ± 0.06 | 0.172 | 0.016 | ||||
| TBA, μmol/L | 28.64 ± 4.96 | 174.07 ± 21.80 | 79.77 ± 19.03 | < 0.001 | 0.006 | ||||
| Liver | |||||||||
| TC, μmol/g | 9.69 ± 0.36 | 10.83 ± 0.25 | 11.38 ± 0.55 | 0.021 | 0.384 | ||||
| HDL-C, μmol/g | 7.03 ± 0.07 | 7.15 ± 0.49 | 7.48 ± 0.3 | 0.812 | 0.580 | ||||
| LDL-C, μmol/gprot | 2.60 ± 0.05 | 3.61 ± 0.07 | 2.74 ± 0.23 | < 0.001 | 0.003 | ||||
| TBA, μmol/gprot | 5.66 ± 0.55 | 3.68 ± 0.24 | 5.03 ± 0.30 | 0.008 | 0.004 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).