Submitted:
06 January 2026
Posted:
08 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Spectral Approach to the Fractional Powers of Operators
2.1. Application of the Resolvent to the Construction of a Fractional Power
- 1.
- The operators can be extended to be closed linear.
- 2.
- For , a semigroup property is valid , .
2.2. Rate of Convergence: Spectral Approach
2.3. Riemann-Liouville Fractional Integral
2.4. Erdélyi-Kober Fractional Integral
2.5. Hadamard-Type Fractional Integral
3. The Matrix Approach to the Fractional Powers of Operator
3.1. Illustrative Example
3.2. Power of a Diagonalizable Triangle Matrix
3.3. Resolvent of a Diagonalizable Triangle Matrix
3.4. Definition of Fractional Power of the Riemann–Stieltjes Integral Using Matrix Approach
3.5. Rate of Convergence for Concrete Fractional Integrals
4. Discussion
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lamb, W.; McBride, A.C. On relating two approaches to fractional calculus. J. Math. Anal. Appl. 1988, 132, 590–610. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional integrals and derivatives; Gordon and Breach Science Publishers: Amsterdam, Netherlands, 1993; p. 976 p. [Google Scholar]
- Podlubny, I. Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in Science and Engineering, 198, Academic Press, SanDiego, 1999; 340 p.
- Sprinkhuizen-Kuyper, I.G. A fractional integral operator corresponding to negative powers of a certain second-order differential operator. Math. Analysis and Applications 1979, 72, 674–702. [Google Scholar] [CrossRef]
- Phillips, R.S. On the generation of semi-groups of linear operators. Pacific J. Math. 1952, 2, 343–369. [Google Scholar] [CrossRef]
- Hille, E.; Phillips, R.S. Functional analysis and semi-groups, 2rd ed.; Amer. Math. Soc. Colloq. Publ.: USA, 1996; p. 808 p. [Google Scholar]
- Balakrishnan, A.V. An operational calculus for infinitesimal generators of semigroups. Trans. Amer. Math. Soc. 1959, 91, 330–353. [Google Scholar]
- Balakrishnan, A.V. Fractional powers of closed operators and semigroups generated by them. Pacific J. Math. 1960, 10, 419–437. [Google Scholar] [CrossRef]
- Kato, T. Note on fractional powers of linear operators. Proc. Japan Acad. 1960, 36, 94–96. [Google Scholar] [CrossRef]
- Komatsu, H. Fractional powers of operators. Pacific J. Math. 1966, 19, 285–346. [Google Scholar] [CrossRef]
- Hövel, H.W.; Westphal, U. Fractional powers of closed operators. Studia Math. 1972, 42, 177–194. [Google Scholar] [CrossRef]
- Martinez, C.; Sanz, M.; Marco, L. Fractional powers of operators. J. Math. Soc. Japan 1988, 40, 331–347. [Google Scholar] [CrossRef]
- Krasnosel’skii, M.A.; Sobolevskii, P.E. Fractional powers of operators acting in Banach spaces. Doklady Akad. Nauk SSSR 1959, 129, 499–502. [Google Scholar]
- Krasnosel’skii, M.A.; Zabreyko, P.P.; Pustylnik, E.I.; Sobolevski, P.E. Integral operators in spaces of summable functions; Springer, 2011; p. 536 p. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman—J. Wiley: Harlow—New York; Chapman and Hall/CRC: London, UK, 1994. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics; Springer Berlin: Heidelberg, 2010. [Google Scholar]
- Kolokoltsov, V. N. The Probabilistic Point of View on the Generalized Fractional Partial Differential Equations. Fract. Calc. Appl. Anal. 2019, 22, 543–600. [Google Scholar] [CrossRef]
- Kolokoltsov, V.N.; Shishkina, E.L. Matrix Approach to the Fractional Calculus. arXiv 2025, arXiv:2512.10330. Available online: https://arxiv.org/abs/2512.10330 (accessed on 11 December 2025).
- Kolokoltsov, V.N. Markov Processes, Semigroups and Generators; De Gruyter: Berlin, New York, 2011. [Google Scholar]
- Kolmogorov, A.N.; Fomin, S.V. Elements of the Theory of Functions and Functional Analysis . In Metric and Normed Spaces; Graylock Press: ROCHESTER, N. Y., UK, 1957; Vol. 1, p. 130 p. [Google Scholar]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Stirling functions of the second kind in the setting of difference and fractional calculus. Numer. Funct. Anal. Optim. 2003, 24(7–8), 673–711. [Google Scholar] [CrossRef]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 2002, 269(1), 1–27. [Google Scholar] [CrossRef]
- Kolokoltsov, V.N.; Shishkina, E.L. Fractional Calculus for Non-Discrete Signed Measures. Mathematics 2024, 12, 2804. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
