Submitted:
26 January 2026
Posted:
26 January 2026
You are already at the latest version
Abstract
This paper presents GISMOL (General Intelligent System Modelling Language), a Python-based framework implementing Constrained Object Hierarchies (COH)—a neuroscience-inspired theoretical framework for Artificial General Intelligence (AGI). COH and GISMOL together provide a unified language for modelling and implementing intelligent systems across diverse domains including healthcare, manufacturing, finance, and governance. The framework bridges symbolic AI and neural computation through its core architecture of constraint-aware objects with embedded neural components, hierarchical reasoning capabilities, and natural language integration. We demonstrate how GISMOL translates COH’s formal 9-tuple representation into executable systems with six comprehensive case studies, showing its versatility in modelling complex intelligent behaviors while maintaining theoretical rigor. The implementation includes specialized modules for neural integration, multi-domain reasoning, and natural language processing, all built around the COHObject abstraction that encapsulates intelligence as constrained hierarchical structures.
Keywords:
1. Introduction
- A formal presentation of the COH theoretical framework and its neuroscience grounding.
- A description of the design goals and initial API of GISMOL, a prototype Python library for COH.
- Six conceptual case studies and code snippets illustrating intended usage patterns and cross-domain applicability.
- A preliminary comparison with existing approaches to indicate potential advantages and gaps.
- A development roadmap, implementation strategies, and evaluation plan suitable for future empirical validation.
2. Literature Review
2.1. Symbolic AI and Knowledge Representation
2.2. Neural Networks and Deep Learning
2.3. Neuro-Symbolic Integration
2.4. Cognitive Architectures and AGI
2.5. Constraint Satisfaction and Optimization
3. Introducing Constrained Object Hierarchies (COH)
3.1. Formal Definition
3.2. Neuroscience Grounding
3.3. Theoretical Significance
- Unified Representation: Integrates symbolic, neural, and constraint-based representations.
- Hierarchical Composition: Supports arbitrary decomposition while maintaining constraint propagation.
- Multi-domain Constraints: Accommodates biological, physical, temporal, and other domain-specific constraints.
- Real-time Monitoring: Constraint daemons provide continuous validation.
- Adaptive Optimization: Goal constraints guide learning toward multiple objectives.
4. Structure of GISMOL
4.1. Core Module (gismol.core)
- COHObject: Base class for intelligent system components.
- ConstraintSystem: Manages constraint evaluation and resolution.
- ConstraintDaemon: Autonomous agents for real-time constraint monitoring.
- COHRepository: Manages object collections and relationships.
4.2. Neural Module (gismol.neural)
- NeuralComponent: Base class combining nn.Module with COHObject.
- EmbeddingModel: Generates semantic representations of objects and text.
- ConstraintAwareOptimizer: Optimizers that respect constraints.
- Specialized models for classification, regression, and generation (in progress).
4.3. Reasoners Module (gismol.reasoners)
- BaseReasoner: Fallback implementation with robust error handling.
- Domain-specific reasoners (Biological, Physical, Geometric, etc.).
- Advanced reasoning systems (Causal, Probabilistic, Temporal, etc.).
- Registry pattern for dynamic reasoner discovery.
4.4. NLP Module (gismol.nlp)
- COHDialogueManager: Manages conversations with constraint validation (prototype).
- EntityRelationExtractor: Extracts knowledge from text into COHObjects (prototype).
- Text2COH: Converts documents into hierarchical object structures (planned).
- ResponseValidator: Ensures language generation respects constraints (planned).
4.5. COH-to-GISMOL Mapping
5. Constructs of GISMOL
5.1. Classes in the Core
class COHObject:
“““Fundamental unit of intelligence in COH framework”““
def __init__(self, name):
self.name = name
self.identity_constraints = []
self.trigger_constraints = []
self.goal_constraints = []
self.neural_components = {}
self.daemons = {}
self.relations = COHRelation()
self._embedding_model = None
def add_identity_constraint(self, constraint_spec):
“““Add fundamental structural constraint”““
constraint = IdentityConstraint.from_spec(constraint_spec)
self.identity_constraints.append(constraint)
def add_neural_component(self, name, component, is_embedding_model=False):
“““Add adaptive neural component”““
if is_embedding_model:
self._embedding_model = component
else:
self.neural_components[name] = component
def semantic_distance(self, other):
“““Calculate semantic distance to another object”““
if self._embedding_model:
return self._embedding_model.distance(self, other)
return float(‘inf’)
class COHRepository:
“““Repository for COHObjects with semantic operations”““
def find_semantic_matches(self, query, threshold=0.7):
“““Find objects semantically similar to query”““
query_embedding = self.embedder.embed_text(query)
matches = []
for obj in self.objects.values():
obj_embedding = obj.get_embedding()
similarity = cosine_similarity(query_embedding, obj_embedding)
if similarity >= threshold:
matches.append((obj, similarity))
return sorted(matches, key=lambda x: x[1], reverse=True)
class ConstraintSystem:
“““Orchestrates constraint evaluation with multiple reasoners”““
def validate_all(self, context):
“““Validate all constraints with appropriate reasoners”““
results = {}
for constraint in self.constraints:
reasoner_type = self._determine_reasoner_type(constraint)
reasoner = Reasoner.get_reasoner(reasoner_type)()
results[constraint.name] = reasoner.evaluate(constraint, context)
return results
5.2. Neural Module Classes
class NeuralComponent(COHObject, nn.Module):
“““Base class for neural components with constraint awareness”““
def train_component(self, dataset, constraints=None):
“““Train with constraint penalty terms”““
if constraints:
loss_fn = self._build_constrained_loss(constraints)
else:
loss_fn = nn.CrossEntropyLoss()
# Training loop with constraint monitoring
for epoch in range(epochs):
for batch in dataset:
loss = self._train_step(batch, loss_fn)
self._check_training_constraints(loss)
class MultiModalEmbedder(EmbeddingModel):
“““Generates embeddings from multiple modalities”““
def __call__(self, coh_object):
“““Generate unified embedding for COHObject”““
text_embedding = self.text_encoder(coh_object.description)
attribute_embedding = self.attribute_encoder(coh_object.attributes)
constraint_embedding = self.constraint_encoder(coh_object.constraints)
# Combine with attention
combined = self.attention_layer(
text_embedding,
attribute_embedding,
constraint_embedding
)
return combined
5.3. Reasoners Module Classes
class Reasoner(ABC):
“““Abstract base class for constraint reasoners”““
_registry = {} # Global registry of reasoner types
@classmethod
def get_reasoner(cls, reasoner_type):
“““Factory method for getting reasoner instances”““
return cls._registry.get(reasoner_type, BaseReasoner)
@abstractmethod
def evaluate(self, constraint, context):
“““Evaluate constraint in given context”““
pass
@abstractmethod
def attempt_resolution(self, constraint, context):
“““Attempt to resolve constraint violation”““
pass
class BiologicalReasoner(BaseReasoner, reasoner_type=“biological”):
“““Reasoner for biological and medical constraints”““
def evaluate(self, constraint, context):
if “concentration” in constraint.specification:
return self._evaluate_concentration(constraint, context)
elif “growth_rate” in constraint.specification:
return self._evaluate_growth(constraint, context)
return super().evaluate(constraint, context)
class SafetyReasoner(BaseReasoner, reasoner_type=“safety”):
“““Redundant validation for safety-critical constraints”““
def evaluate(self, constraint, context):
# Primary evaluation
primary_result = super().evaluate(constraint, context)
# Redundant validation with different method
redundant_result = self._redundant_evaluation(constraint, context)
# Both must agree for safety-critical constraints
if constraint.critical:
return primary_result and redundant_result
return primary_result
5.4. NLP Module Classes
class COHDialogueManager:
“““Manages dialogues with constraint validation”““
def respond(self, user_input):
“““Generate constraint-aware response”““
# Recognize intent
intent = self.intent_recognizer.recognize_intent(user_input)
# Generate candidate response
candidate = self.response_generator.generate(intent)
# Validate against constraints
validation = self.response_validator.validate(
candidate,
self.repository.objects
)
if validation[‘valid’]:
return candidate
else:
# Generate alternative that satisfies constraints
return self._generate_constraint_compliant_alternative(
candidate,
validation[‘violations’]
)
class Text2COH:
“““Converts text documents into COHObjects”““
def process_document(self, text):
“““Convert document to hierarchical COH structure”““
# Extract knowledge units
units = self.extractor.extract_knowledge_units(text)
# Create COHObjects for each unit
coh_objects = []
for unit in units:
obj = COHObject(name=unit[‘name’])
obj.description = unit[‘content’]
# Infer constraints from text
constraints = self.constraint_parser.parse(unit[‘constraints’])
for constraint in constraints:
obj.add_identity_constraint(constraint)
coh_objects.append(obj)
return coh_objects
6. Programming Intelligent Systems with GISMOL
6.1. Main Class Definition
“““Healthcare: Autonomous diagnostic system with COH implementation”““
def __init__(self, name=“DiagnosticAssistant”):
super().__init__(name)
# 1. Components - hierarchical decomposition
self.components = {
‘symptom_analyzer’: SymptomAnalyzer(),
‘disease_knowledge_base’: DiseaseKnowledgeBase(),
‘treatment_recommender’: TreatmentRecommender(),
‘patient_history_manager’: PatientHistoryManager()
}
# 2. Attributes - state variables
self.attributes = {
‘diagnostic_confidence’: 0.0,
‘current_patient’: None,
‘active_differential_diagnosis’: [],
‘recommended_tests’: [],
‘last_validation_timestamp’: None
}
# 3. Methods are defined below as class methods
# 4. Neural Components
self._initialize_neural_components()
# 5. Neural Embedding
self._initialize_embedding_model()
# 6. Identity Constraints
self._define_identity_constraints()
# 7. Trigger Constraints
self._define_trigger_constraints()
# 8. Goal Constraints
self._define_goal_constraints()
# 9. Constraint Daemons
self._initialize_daemons()
# Validate initial state
self._validate_initial_configuration()
6.2. Components Implementation
def _initialize_components(self):
“““Initialize subsystem components”““
# Symptom analyzer with pattern recognition
self.components[‘symptom_analyzer’] = SymptomAnalyzer()
self.add_relation(self, self.components[‘symptom_analyzer’],
“coordinates”, “diagnostic_pipeline”)
# Disease knowledge base with semantic relationships
self.components[‘disease_knowledge_base’] = DiseaseKnowledgeBase()
self.components[‘disease_knowledge_base’].load_medical_ontology(
“snomed_ct”
)
# Treatment recommender with constraint-aware planning
self.components[‘treatment_recommender’] = TreatmentRecommender()
# Patient history manager for longitudinal tracking
self.components[‘patient_history_manager’] = PatientHistoryManager()
# Establish component relationships
self._establish_component_relationships()
6.3. Attributes with Validation
@property
def diagnostic_confidence(self):
return self.attributes[‘diagnostic_confidence’]
@diagnostic_confidence.setter
def diagnostic_confidence(self, value):
# Validate against constraints before setting
if not self._validate_value(‘diagnostic_confidence’, value):
raise ConstraintViolation(
f”Diagnostic confidence {value} violates constraints”
)
self.attributes[‘diagnostic_confidence’] = value
self._notify_daemons(‘attribute_change’, ‘diagnostic_confidence’)
6.4. Methods with Constraint Checking
def diagnose_patient(self, patient_data, symptoms):
“““Main diagnostic method with full constraint validation”““
# Pre-condition validation
preconditions = self._check_diagnostic_preconditions(patient_data)
if not preconditions[‘met’]:
return {
‘success’: False,
‘error’: ‘Preconditions not met’,
‘violations’: preconditions[‘violations’]
}
# Step 1: Symptom analysis using neural component
symptom_embedding = self.get_neural_component(
‘symptom_encoder’
).encode(symptoms)
# Step 2: Retrieve similar cases from knowledge base
similar_cases = self.components[‘disease_knowledge_base’].query(
symptom_embedding,
similarity_threshold=0.7
)
# Step 3: Generate differential diagnosis
differential = self._generate_differential_diagnosis(
symptoms,
similar_cases
)
# Step 4: Validate against medical constraints
validation = self._validate_diagnosis(differential)
# Step 5: If validation fails, attempt resolution
if not validation[‘valid’]:
resolved = self._attempt_diagnostic_resolution(
differential,
validation[‘violations’]
)
if resolved:
differential = resolved
else:
# Escalate to human expert
self._trigger_human_review(differential, validation)
# Update attributes
self.attributes[‘active_differential_diagnosis’] = differential
self.attributes[‘diagnostic_confidence’] = self._calculate_confidence(
differential
)
# Post-condition validation
self._validate_post_diagnosis_state()
return {
‘success’: True,
‘diagnosis’: differential,
‘confidence’: self.attributes[‘diagnostic_confidence’],
‘recommended_tests’: self.attributes[‘recommended_tests’]
}
6.5. Neural Components Integration
def _initialize_neural_components(self):
“““Initialize neural components for diagnostic assistance”““
# Multi-modal symptom encoder
self.add_neural_component(
“symptom_encoder”,
MultiModalEmbedder(
name=“symptom_encoder”,
text_dim=512,
clinical_dim=256,
output_dim=128
)
)
# Bayesian diagnostic classifier with uncertainty estimation
self.add_neural_component(
“diagnostic_classifier”,
BayesianClassifier(
name=“disease_classifier”,
input_dim=128,
output_dim=2000, # ICD-10 codes
num_mc_samples=50, # Monte Carlo samples for uncertainty
constraints=[
{
‘name’: ‘clinical_confidence’,
‘specification’: ‘prediction_confidence >= 0.65’,
‘priority’: ‘HIGH’
}
]
)
)
# Treatment outcome predictor
self.add_neural_component(
“outcome_predictor”,
NeuralTemporalModel(
name=“treatment_outcome”,
input_dim=256,
hidden_dim=512,
prediction_horizon=30 # 30-day outcomes
)
)
6.6. Neural Embedding for Medical Concepts
def _initialize_embedding_model(self):
“““Initialize medical concept embedding model”““
self.add_neural_component(
“medical_embedder”,
MedicalConceptEmbedder(
name=“clinical_embedder”,
knowledge_sources=[‘SNOMED-CT’, ‘ICD-10’, ‘UMLS’],
embedding_dim=256,
constraint_preservation=True
),
is_embedding_model=True
)
# Pre-train with medical corpus if needed
if not self.get_neural_component(“medical_embedder”).is_trained:
medical_corpus = self._load_medical_corpus()
self.get_neural_component(“medical_embedder”).train(
medical_corpus,
epochs=50,
constraint_weight=0.1
)
6.7. Identity Constraints Definition
def _define_identity_constraints(self):
“““Define fundamental medical and ethical constraints”““
# Medical accuracy constraints
self.add_identity_constraint({
‘name’: ‘diagnostic_accuracy’,
‘specification’: ‘diagnostic_confidence >= 0.7 or escalate_to_human’,
‘category’: ‘medical’,
‘severity’: 9,
‘reasoner’: ‘probabilistic’
})
# Ethical constraints
self.add_identity_constraint({
‘name’: ‘patient_privacy’,
‘specification’: ‘patient_data.encrypted == True and access_logged == True’,
‘category’: ‘ethical’,
‘severity’: 10,
‘reasoner’: ‘general’
})
# Clinical guideline constraints
self.add_identity_constraint({
‘name’: ‘guideline_compliance’,
‘specification’: ‘treatment in approved_guidelines or justification_provided’,
‘category’: ‘regulatory’,
‘severity’: 8,
‘reasoner’: ‘biological’
})
# Safety constraints
self.add_identity_constraint({
‘name’: ‘drug_interaction_check’,
‘specification’: ‘check_interactions(prescribed_drugs) == []’,
‘category’: ‘safety’,
‘severity’: 10,
‘critical’: True
})
6.8. Trigger Constraints for Reactive Behavior
def _define_trigger_constraints(self):
“““Define event-driven medical responses”““
# Emergency response trigger
self.add_trigger_constraint({
‘name’: ‘critical_finding’,
‘type’: ‘emergency’,
‘event’: ‘symptom_severity > 8 or vital_signs_abnormal’,
‘condition’: ‘patient_location_known == True’,
‘action’: ‘alert_emergency_team’,
‘postcondition’: ‘emergency_response_initiated within 5min’,
‘critical’: True,
‘reasoner’: ‘temporal’
})
# Test result follow-up trigger
self.add_trigger_constraint({
‘name’: ‘abnormal_result’,
‘type’: ‘followup’,
‘event’: ‘lab_result.out_of_range == True’,
‘condition’: ‘patient_contactable == True’,
‘action’: ‘schedule_followup’,
‘postcondition’: ‘followup_scheduled within 24h’,
‘reasoner’: ‘temporal’
})
# Treatment adjustment trigger
self.add_trigger_constraint({
‘name’: ‘ineffective_treatment’,
‘type’: ‘therapeutic’,
‘event’: ‘symptom_improvement < 0.3 after 48h treatment’,
‘condition’: ‘alternative_treatments_available == True’,
‘action’: ‘adjust_treatment_plan’,
‘postcondition’: ‘new_plan_generated and patient_informed’,
‘reasoner’: ‘causal’
})
6.9. Goal Constraints for Optimization
def _define_goal_constraints(self):
“““Define optimization objectives for diagnostic system”““
# Diagnostic accuracy goal
self.add_goal_constraint({
‘name’: ‘maximize_accuracy’,
‘type’: ‘optimization’,
‘objective’: ‘MAXIMIZE diagnostic_accuracy’,
‘subject_to’: [
‘false_positive_rate < 0.05’,
‘false_negative_rate < 0.02’,
‘decision_time < 300 seconds’
],
‘priority’: ‘HIGH’,
‘reasoner’: ‘goal’
})
# Resource efficiency goal
self.add_goal_constraint({
‘name’: ‘minimize_testing’,
‘type’: ‘efficiency’,
‘objective’: ‘MINIMIZE unnecessary_tests’,
‘subject_to’: [
‘diagnostic_confidence >= 0.7’,
‘patient_cost_burden < threshold’
],
‘priority’: ‘MEDIUM’,
‘reasoner’: ‘resource’
})
# Treatment outcome goal
self.add_goal_constraint({
‘name’: ‘optimize_outcomes’,
‘type’: ‘clinical’,
‘objective’: ‘MAXIMIZE 30_day_positive_outcome’,
‘subject_to’: [
‘treatment_side_effects < acceptable_level’,
‘patient_adherence > 0.8’
],
‘priority’: ‘HIGH’,
‘reasoner’: ‘probabilistic’
})
6.10. Constraint Daemons for Continuous Monitoring
def _initialize_daemons(self):
“““Initialize medical constraint monitoring daemons”““
# Patient safety daemon (continuous monitoring)
self.daemons[‘patient_safety’] = MedicalSafetyDaemon(
monitoring_interval=0.5, # Check every 500ms
vital_sign_monitors=[‘heart_rate’, ‘blood_pressure’, ‘oxygen_saturation’],
alert_channels=[‘visual’, ‘auditory’, ‘pager’],
escalation_protocol=self._safety_escalation_protocol
)
# Diagnostic quality daemon
self.daemons[‘diagnostic_quality’] = QualityAssuranceDaemon(
evaluation_interval=60.0, # Check every minute
quality_metrics=[‘accuracy’, ‘timeliness’, ‘completeness’],
feedback_mechanism=self._quality_feedback_loop
)
# Ethical compliance daemon
self.daemons[‘ethical_compliance’] = EthicalComplianceDaemon(
audit_interval=3600.0, # Audit every hour
compliance_checks=[‘privacy’, ‘consent’, ‘bias_detection’],
reporting_system=self._compliance_reporting
)
# Start all daemons
for daemon_name, daemon in self.daemons.items():
daemon.start()
logger.info(f”Started {daemon_name} daemon”)
6.11. Object Instantiation and Usage
# Instantiate the diagnostic assistant
diagnostic_assistant = AutonomousDiagnosticAssistant(
name=“HospitalDiagnosticAI”
)
# Initialize with hospital-specific configuration
diagnostic_assistant.initialize_with_hospital(
hospital_id=“HOSP_123”,
department=“Emergency”,
access_level=“Physician”
)
# Process a patient case
patient_data = {
‘id’: ‘PAT_789’,
‘age’: 45,
‘gender’: ‘F’,
‘vitals’: {
‘bp’: ‘140/90’,
‘hr’: 110,
‘temp’: 38.5
},
‘symptoms’: [‘chest_pain’, ‘shortness_of_breath’, ‘nausea’],
‘history’: [‘hypertension’, ‘smoker’]
}
# Run diagnostic process
result = diagnostic_assistant.diagnose_patient(
patient_data=patient_data,
symptoms=patient_data[‘symptoms’]
)
if result[‘success’]:
print(f”Diagnosis: {result[‘diagnosis’]}”)
print(f”Confidence: {result[‘confidence’]:.2f}”)
print(f”Recommended tests: {result[‘recommended_tests’]}”)
# Check constraint satisfaction
validation = diagnostic_assistant.validate_current_state()
if validation[‘all_satisfied’]:
print(“All constraints satisfied”)
else:
print(f”Constraint violations: {validation[‘violations’]}”)
else:
print(f”Diagnosis failed: {result[‘error’]}”)
7. Modelling and Programming Examples
7.1. Smart Manufacturing: Adaptive Production Orchestrator
- C: Production cells, material handlers, quality stations
- A: OEE, quality metrics, energy consumption
- M: Dynamic scheduling, maintenance routines
- N: RL scheduler, anomaly detectors
- E: Machine behavior embeddings
- I: Physical laws, safety protocols
- T: Quality deviation triggers, maintenance alerts
- G: Maximize throughput, minimize energy, maintain quality
- D: Safety monitoring, constraint enforcement
class AdaptiveProductionOrchestrator(COHObject):
def __init__(self, name=“ProductionOrchestrator”):
super().__init__(name)
# Hierarchical decomposition
self.components = {
‘scheduler’: NeuralSchedulingModel(),
‘quality_controller’: QualityController(),
‘resource_manager’: ResourceManager()
}
# Neural components for adaptation
self.add_neural_component(
“dynamic_scheduler”,
NeuralSchedulingModel(
task_dim=64,
resource_dim=32,
hidden_dim=256
)
)
# Production constraints
self.add_identity_constraint({
‘name’: ‘throughput_target’,
‘specification’: ‘units_per_hour >= 1000’,
‘reasoner’: ‘resource’
})
# Real-time trigger for disruptions
self.add_trigger_constraint({
‘name’: ‘machine_failure’,
‘event’: ‘machine_status == “failed”’,
‘action’: ‘reallocate_tasks’,
‘postcondition’: ‘throughput_loss < 5%’
})
7.2. Social Science: Policy Impact Simulator
- C: Demographic groups, institutions, social networks
- A: Socioeconomic indicators, opinion distributions
- M: Policy implementation, communication campaigns
- N: Agent-based models, graph neural networks
- E: Policy space embeddings, cultural dimensions
- I: Population conservation, budget constraints
- T: Inequality triggers, trust thresholds
- G: Maximize social welfare, minimize unintended consequences
- D: Democratic participation monitoring
class PolicyImpactSimulator(COHObject):
def simulate_policy(self, policy, steps=100):
“““Run policy simulation with constraint validation”““
# Initialize agent populations
agents = self._create_agent_population()
# Apply policy as constraint modifications
modified_constraints = self._policy_to_constraints(policy)
# Run simulation with neural behavior models
for step in range(steps):
# Agent decisions using neural components
decisions = self.get_neural_component(
‘agent_model’
).predict(agents, self.context)
# Update with constraint satisfaction
self._update_with_constraints(agents, decisions)
# Monitor goal progress
self.daemons[‘goal’].evaluate_progress()
return self._collect_outcomes()
7.3. Psychology: Personalized Mental Health Companion
- C: Cognitive modules, coping strategies, therapeutic techniques
- A: Mood states, cognitive load, sleep quality
- M: Cognitive restructuring, mindfulness practices
- N: Few-shot learning models, emotion recognition
- E: Psychological state embeddings, therapeutic technique embeddings
- I: Therapeutic boundaries, client autonomy
- T: Suicidal ideation detection, progress stagnation
- G: Maximize well-being, build resilience, personalize interventions
- D: Relationship boundary monitoring, risk protocol enforcement
class MentalHealthCompanion(COHObject):
def __init__(self, client_profile):
super().__init__(name=f”Companion_{client_profile[‘id’]}”)
# Personalize based on client
self._personalize_components(client_profile)
# Ethical constraints as identity constraints
self.add_identity_constraint({
‘name’: ‘client_autonomy’,
‘specification’: ‘never override_client_choice’,
‘critical’: True
})
# Crisis detection trigger
self.add_trigger_constraint({
‘name’: ‘crisis_alert’,
‘event’: ‘suicidal_ideation_detected’,
‘action’: ‘escalate_to_human’,
‘postcondition’: ‘human_contact_established within 15min’
})
7.4. Finance: Adaptive Portfolio Management System
- C: Asset classes, investment strategies, risk factors
- A: Returns, volatility, correlations, liquidity
- M: Rebalancing, hedging, execution
- N: Regime detection networks, attention mechanisms
- E: Asset embeddings, market regime embeddings
- I: Portfolio sum constraints, regulatory requirements
- T: Risk limit breaches, liquidity drops
- G: Maximize risk-adjusted returns, minimize drawdowns
- D: Regulatory compliance monitoring, mandate validation
class AdaptivePortfolioManager(COHObject):
def rebalance_portfolio(self, market_data):
“““Constraint-aware portfolio rebalancing”““
# Predict regime with neural component
regime = self.get_neural_component(
‘regime_detector’
).predict(market_data)
# Adjust constraints based on regime
self._adjust_risk_constraints(regime)
# Optimize with constraint-aware optimizer
optimizer = ConstraintAwareOptimizer(
constraints=self._get_all_constraints(),
penalty_weight=0.1
)
# Execute with transaction cost constraints
return self._execute_rebalancing(optimizer.solution)
7.5. Governance: Participatory Policy Co-creation Platform
- C: Citizen groups, government agencies, expert panels
- A: Opinion distributions, trust measures, feasibility scores
- M: Deliberative polling, participatory budgeting
- N: Argument analysis models, consensus detection
- E: Policy space embeddings, stakeholder position embeddings
- I: Constitutional principles, inclusion requirements
- T: Polarization thresholds, deadlock detection
- G: Maximize legitimacy, minimize decision latency
- D: Democratic equality monitoring, procedural fairness validation
class PolicyCoCreationPlatform(COHObject):
def facilitate_deliberation(self, policy_draft, stakeholders):
“““Facilitate deliberation with constraint preservation”““
# Analyze arguments with NLP
arguments = self.get_neural_component(
‘argument_analyzer’
).process(stakeholders.comments)
# Detect consensus areas
consensus = self._detect_consensus(arguments)
# Generate revised policy satisfying constraints
revised = self._revise_policy(
policy_draft,
consensus,
self._get_all_constraints()
)
# Validate against democratic constraints
validation = self.daemons[‘democratic’].validate(revised)
return revised, validation
8. Summary of COH/GISMOL Advantages
8.1. Comparison with Existing Frameworks
8.2. Unique Contributions of COH/GISMOL
- Integrated Constraint System: Combines identity, trigger, and goal constraints with neural components.
- Hierarchical Organization: Natural decomposition of complex systems while maintaining coherence.
- Multi-domain Reasoning: Unified handling of biological, physical, temporal, and other constraints.
- Real-time Monitoring: Constraint daemons provide continuous safety guarantees.
- Practical Implementation (prototype): Python library enables rapid prototyping of intelligent systems.
- Cross-domain Applicability: Single framework applicable to healthcare, manufacturing, finance, etc.
8.3. Limitations
- Learning Curve: Requires understanding of both symbolic and neural approaches.
- Computational Overhead: Constraint monitoring adds runtime overhead.
- Domain Knowledge Requirement: System designers must specify appropriate constraints.
- Early Development Stage: Limited real-world deployment compared to mature frameworks; API subject to change.
9. Conclusion and Future Research Directions
9.1. Summary
9.2. Future Research Directions
- Scalability Optimization: Improving performance for large constraint systems.
- Automated Constraint Learning: Learning constraints from data rather than manual specification.
- Formal Verification: Mathematical proofs of constraint satisfaction under certain conditions.
- Cognitive Science Validation: Testing COH models against human cognitive performance.
- Distributed Implementation: Scaling GISMOL systems across multiple computing nodes.
- Quantum Integration: Exploring quantum computing for constraint satisfaction problems.
- Ethical Constraint Formalization: Developing frameworks for encoding ethical principles.
- Cross-modal Learning: Integrating vision, language, and other modalities more seamlessly.
9.3. Concluding Remarks
References
- Anderson, J. R.; Lebiere, C. The Atomic Components of Thought; Psychology Press, 1998. [Google Scholar]
- Goertzel, B. Artificial general intelligence: Concept, state of the art, and future prospects. Journal of Artificial General Intelligence 2014, 5(no. 1), 1–46. [Google Scholar] [CrossRef]
- Marcus, G. The next decade in AI: Four steps towards robust artificial intelligence. arXiv 2020, arXiv:2002.06177. [Google Scholar] [CrossRef]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence 2019, 1(no. 5), 206–215. [Google Scholar] [CrossRef] [PubMed]
- Levesque, H. J. Common sense, the Turing test, and the quest for real AI; MIT Press, 2017. [Google Scholar]
- d’Avila Garcez, A. S.; Lamb, L. C. Neurosymbolic AI: The 3rd wave. Artificial Intelligence Review 2020, 53, 1–20. [Google Scholar]
- Garnelo, M.; Shanahan, M. Reconciling deep learning with symbolic artificial intelligence: representing objects and relations. Current Opinion in Behavioral Sciences 2019, 29, 17–23. [Google Scholar] [CrossRef]
- Besold, T. R. Neural-symbolic learning and reasoning: A survey and interpretation. arXiv 2017, arXiv:1711.03902. [Google Scholar] [CrossRef]
- Laird, J. E. The SOAR cognitive architecture; MIT Press, 2012. [Google Scholar]
- Langley, P. An integrative framework for artificial intelligence. Journal of Artificial General Intelligence 2019, 10(no. 1), 1–8. [Google Scholar]
- Langley, P. The cognitive systems paradigm. In Advances in Cognitive Systems; 2012; Volume 1, pp. 3–13. [Google Scholar]
- De Raedt, L. From statistical relational to neuro-symbolic artificial intelligence. Artificial Intelligence 2020, 287. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521(no. 7553), 436–444. [Google Scholar] [CrossRef]
- Mnih, V. Human-level control through deep reinforcement learning. Nature 2015, 518(no. 7540), 529–533. [Google Scholar] [CrossRef]
- Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable; 2020. [Google Scholar]
- Manhaeve, R. DeepProbLog: Neural probabilistic logic programming. Advances in Neural Information Processing Systems 2018, 31, 3749–3759. [Google Scholar] [CrossRef]
- Rocktäschel, T.; Riedel, S. End-to-end differentiable proving. Advances in Neural Information Processing Systems 2017, 30, 3788–3800. [Google Scholar]
- Yi, K. Neural-symbolic VQA: Disentangling reasoning from vision and language understanding. Advances in Neural Information Processing Systems 2018, 31, 1031–1042. [Google Scholar]
- Chen, G. H. A survey on hierarchical deep learning. IEEE Access 2020, 8, 68712–68722. [Google Scholar]
- Rosenbloom, P. S. The Sigma cognitive architecture and system. International Journal of Machine Learning and Cybernetics 2019, 10, 147–169. [Google Scholar]
- Langley, P. Cognitive architectures: Research issues and challenges. Cognitive Systems Research 2019, 56, 1–10. [Google Scholar] [CrossRef]
- Rossi, F.; van Beek, P.; Walsh, T. Handbook of constraint programming; Elsevier, 2006. [Google Scholar]
- Dechter, R. Constraint processing; Morgan Kaufmann, 2003. [Google Scholar]
- Hassabis, D. Neuroscience-inspired artificial intelligence. Neuron 2017, 95(no. 2), 245–258. [Google Scholar] [CrossRef]
- Bengio, Y. The consciousness prior. arXiv 2017, arXiv:1709.08568. [Google Scholar]
- Hawkins, J. A framework for intelligence and cortical function based on grid cells in the neocortex. Frontiers in Neural Circuits 2019, 13. [Google Scholar] [CrossRef] [PubMed]
- Leucker, M.; Schallhart, C. A brief account of runtime verification. Journal of Logic and Algebraic Programming 2009, 78(no. 5), 293–303. [Google Scholar] [CrossRef]
- Makary, M. A.; Daniel, M. Medical error—the third leading cause of death in the US. BMJ 2016, 353. [Google Scholar] [CrossRef] [PubMed]
- Rajkomar, A. Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine 2018, 1(no. 18). [Google Scholar] [CrossRef] [PubMed]
- Li, Z. Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems 2018, 48, 144–156. [Google Scholar] [CrossRef]
- Raman, M. R. G. Explainable AI: A review of machine learning interpretability methods. Entropy 2021, 23(no. 1). [Google Scholar]
| COH Element | GISMOL Implementation | Primary Module |
|---|---|---|
| C (Components) | COHObject hierarchy, COHRepository | gismol.core |
| A (Attributes) | COHObject.attributes dictionary | gismol.core |
| M (Methods) | COHObject.methods dictionary | gismol.core |
| N (Neural Components) | NeuralComponent subclasses | gismol.neural |
| E (Embedding) | EmbeddingModel classes | gismol.neural |
| I (Identity Constraints) | Constraint objects with identity category | gismol.core |
| T (Trigger Constraints) | Constraint objects with trigger type | gismol.core |
| G (Goal Constraints) | Constraint objects with goal type | gismol.core |
| D (Constraint Daemons) | ConstraintDaemon instances | gismol.core |
| Framework | Type | Strengths | Limitations | GISMOL (anticipated) |
|---|---|---|---|---|
| SOAR [9] | Cognitive architecture | Symbolic reasoning, goal-driven | Limited learning, no neural integration | Neuro-symbolic integration, constraint system |
| ACT-R [10] | Cognitive architecture | Cognitive modeling, production rules | Complex implementation, limited scalability | Python implementation, hierarchical organization |
| TensorLog [12] | Neuro-symbolic | Differentiable inference, probabilistic | Limited constraint types, no real-time monitoring | Comprehensive constraint system, daemon monitoring |
| DeepProbLog [16] | Neuro-symbolic | Probabilistic logic, neural networks | No hierarchical constraints, limited domains | Multi-domain constraints, hierarchical organization |
| PyTorch/TensorFlow | Deep learning | Neural network flexibility, GPU acceleration | No symbolic reasoning, black-box nature | Symbolic constraint integration, explainability |
| CLIPS [31] | Expert system | Rule-based reasoning, pattern matching | No learning capabilities, static knowledge | Adaptive neural components, continuous learning |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
