On 8 February 2025, an Mw 7.6 strike-slip earthquake ruptured the Swan Islands Transform Fault in the northern Caribbean near its junction with the Mid-Cayman Spreading Center, providing an important offshore case for investigating rupture dynamics along oceanic transform faults. In this study, we jointly apply teleseismic high-frequency back-projection and low-frequency finite-fault full-waveform inversion to image the multi-scale spatiotemporal evolution of the rupture process. Back-projection results reveal a two-stage rupture characterized by an initial sub-shear propagation lasting approximately 20 s, followed by rapid acceleration to supershear velocities of ~5–6 km/s and westward propagation over ~80–100 km. Finite-fault inversion shows that coseismic slip is primarily concentrated within ~20 km west of the epicenter, with a peak slip of ~5.6 m and an overall rupture duration of ~40 s. Comparison between high-frequency radiation and low-frequency slip indicates that most seismic moment was released during the early slow rupture stage, whereas the later fast-propagating segment produced enhanced high-frequency energy but relatively small slip. These observations reveal a pronounced along-strike complimentary relationship between slip amplitude and rupture speed, suggesting a transition in rupture dynamics controlled by variations in fault strength, fracture energy, and/or geometric complexity. By combining high-frequency back-projection with low-frequency finite-fault inversion, we obtain a more complete view of the rupture process of offshore earthquakes, which helps clarify rupture propagation characteristics, including supershear behavior, along oceanic transform faults.